28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
Фармакокинетические лекарственные взаимодействия с участием ингибиторов протонной помпы
string(5) "21058"
Для цитирования: Блюме Х., Донат Ф., Варнке А., Шуг Б.С. Фармакокинетические лекарственные взаимодействия с участием ингибиторов протонной помпы. РМЖ. 2009;9:622.

Ингибиторы протонной помпы (ИПП) обладают самым мощным эффектом среди всех антисекреторных средств, которые применяются в лечении кислотозависимых заболеваний желудка. Эти препараты дозозависимо подавляют базальную и стимулированную секрецию соляной кислоты клетками слизистой оболочки желудка за счет блокирования Н+/К+–адено­зин­трифосфатазы (АТФазы) – протонной помпы париетальной клетки [1]. При повышенной кислотности ИПП протонируются и превращаются в циклические сульфенамиды. За счет этого ИПП оказывают выраженное супрессивное действие на процесс секреции соляной кислоты, которое сохраняется и после того, как препараты элиминируются из крови. Поскольку ИПП ингибируют протонный насос необратимо, для возобновления работы этого фермента необходим его синтез de novo [2]. В большинстве случаев после прекращения лечения ИПП гастрита, ассоциированного с Helicobacter pylori (H. pylori), у большинства пациентов не наблюдается компенсаторной гиперсекреции соляной кислоты, хотя имеются данные о возникновении этого феномена на фоне эрадикации H. pylori [3].

Ингибиторы протонной помпы (ИПП) обладают самым мощным эффектом среди всех антисекреторных средств, которые применяются в лечении кислотозависимых заболеваний желудка. Эти препараты дозозависимо подавляют базальную и стимулированную секрецию соляной кислоты клетками слизистой оболочки желудка за счет блокирования Н+/К+–адено­зин­трифосфатазы (АТФазы) – протонной помпы париетальной клетки [1]. При повышенной кислотности ИПП протонируются и превращаются в циклические сульфенамиды. За счет этого ИПП оказывают выраженное супрессивное действие на процесс секреции соляной кислоты, которое сохраняется и после того, как препараты элиминируются из крови. Поскольку ИПП ингибируют протонный насос необратимо, для возобновления работы этого фермента необходим его синтез de novo [2]. В большинстве случаев после прекращения лечения ИПП гастрита, ассоциированного с Helicobacter pylori (H. pylori), у большинства пациентов не наблюдается компенсаторной гиперсекреции соляной кислоты, хотя имеются данные о возникновении этого феномена на фоне эрадикации H. pylori [3].
Результаты сравнительных исследований свидетельствуют о том, что ИПП подавляют секрецию соляной кислоты и болевой синдром эффективнее, чем антагонисты Н2–гистаминовых рецепторов. При их применении отмечается более быстрое заживление эрозий пищевода [4–6]. Благодаря этому в настоящее время ИПП являются препаратами выбора в терапии гастро­эзофагальной рефлюксной болезни, пептической язвенной болезни и синдрома Золлингера–Эллисона, а также служат обязательными компонентами тройной схемы терапии, направленной на эрадикацию H. pylori у больных с пептической язвенной болезнью [7]. Кроме того, ИПП используются для профилактики стрессовых и НПВП–индуцированных язв [8,9].
Заболевания желудка с нарушением кислотности – это хронические многофакторные патологические процессы, требующие длительной терапии и повышающие вероятность назначения сопутствующего лечения [10]. Чем больше препаратов принимает больной, тем выше вероятность взаимодействий между ними [11]. Это важно учитывать при подборе терапии лицам пожилого возраста, уже получающим несколько лекарственных препаратов [13], а такие заболевания встречаются у них достаточно часто [12]. Следовательно, нельзя исключать возникновение клинически значимых взаимодействий лекарств на фоне использования ИПП и других препаратов [14], особенно с узким терапевтическим индексом.
Взаимодействие лекарств – одна из основных причин неэффективности медикаментозного лечения и развития побочных эффектов [15]. Действительно, частота встречаемости побочных эффектов особенно высока среди стационарных больных и пожилых людей, принимающих несколько препаратов [16,17]. Частота встречаемости взаимодействия лекарств между от­дель­но взятыми индивидуумами варьирует и зависит от возраста больного, количества используемых препаратов (которое с возрастом также увеличивается) [18,19], генетики [20], схемы терапии и характера метаболизма медикаментозных препаратов [20]. Но несмотря на то, что для ИПП вероятность взаимодействия ле­карств достаточно велика, в научной литературе встречается крайне мало данных о возникновении такого взаимодействия [15]. И хотя представленная ниже статья не является систематическим анализом литературы, в ней пойдет речь о сходствах и различиях между ИПП с позиций вероятности, значимости и механизмов лекарственного взаимодействия. В основу обзора легли данные, полученные в процессе поиска по базе данных MEDLINE на запрос «drug interactions AND PPI» («взаимодействие лекарств и ИПП»), а также информация из статей, указанных в списках литературы наиболее значимых обзоров.
Механизмы лекарственного
взаимодействия с участием ИПП
Различают фармакодинамические (синергизм или антагонизм) и фармакокинетические (на этапе всасывания, распределения, метаболизма или элиминации) взаимодействия лекарственных веществ [21]. Кроме того, взаимодействия могут быть основаны на биофармацевтических модификациях, примером чего может служить нарушение растворимости активного компонента препарата или его высвобождения из лекарственной формы. Хотя с учетом фармакологических или биофармацевтических механизмов некоторые разновидности лекарственных взаимодействий можно предсказывать, другие варианты развиваются (или не развиваются) непредвиденно, если принять во внимание специфические характеристики компонентов.
Фармакокинетические взаимодействия могут идти в двух направлениях: влияние основного препарата на фармакокинетику параллельно принимаемого лекарства или влияние параллельно принимаемого лекарства на фармакокинетику основного препарата. Второй тип взаимодействий особенно важно учитывать в группе лиц, получающих медикаментозные средства с узким терапевтическим индексом, такие как фенитоин или варфарин. Даже незначительная трансформация их фармакокинетики влечет за собой выраженные изменения клинической эффективности и непредсказуемые побочные эффекты [22].
Влияние на рН среды желудка
Повышение рН желудочного сока на фоне применения ИПП – один из гипотетических механизмов, лежащих в основе взаимодействий между ними и другими препаратами. Благодаря способности снижать кислотность желудочного сока ИПП могут потенциально изменять растворимость других веществ или нарушать их высвобождение из лекарственных форм с рН–зави­си­мой растворимостью. Такой тип взаимодействий яв­ля­ется специфическим для группы препаратов, а следовательно, его характер не отличается между отдельными ИПП.
Кетоконазол – один из препаратов, фармакокинетические свойства которых определяются рН среды желудка. Действительно, биодоступность кетоконазола при пероральном использовании достоверно снижается на фоне сопутствующего приема однократной дозы омепразола 60 мг, о чем свидетельствует уменьшение площади под кривой (AUC) зависимости сывороточной концентрации от времени на 80% [23]. Этот эффект объясняется в основном за счет крайне низкой растворимости кетоконазола при pH>3. Более того, показано, что растворимость таблеток кетоконазола зависит от рН среды [24].
Итраконазол, практически не растворимый в разбавленном растворе кислоты, не рекомендуется назначать пациентам с недостаточной кислотностью желудочного сока, равно как и больным на терапии препаратами для снижения кислотности среды желудка, например, ИПП. Это заключение было сделано на основании результатов исследования, согласно которым лечение омепразолом в дозе 40 мг уменьшает среднюю AUC24 и пиковую концентрацию в плазме крови (Cmax¬) итраконазола в капсулах (200 мг) для перорального использования на 64 и 66% соответственно [25]. Но если принимать итраконазол перорально в виде раствора, то сопутствующее назначение омепразола в дозе 40 мг не оказывает существенного влияния на Cmax, Тmax (время, необходимое для достижения Cmax) и AUC24 [26].
Аналогичным образом понижается растворимость ингибитора ВИЧ–протеазы индинавира при повышении рН желудочного сока, как результата терапии омепразолом, что может привести к нарушению всасывания и ослаблению антиретровирусной активности препарата. Эффективность индинавира падает и вследствие индукции омепразолом изофермента цитохрома Р450 (CYP) 3А. Так, в ходе небольшого исследования, проведенного в группе ВИЧ–инфицированных лиц, было установлено, что одновременное применение омепразола (ежедневная дозировка 20–40 мг) и индинавира (800 мг каждые 8 часов) приводит к уменьшению концентрации индинавира в плазме крови примерно у половины больных [27]. Напротив, степень всасывания антацида висмута (висмута трикалия дицитрат) увеличивается при сопутствующем назначении омепразола (40 мг/сут. в течение 1 недели), что объясняют нарастанием рН сре­ды желудка [28].
Хотя кислотность желудочного сока влияет на различные виды лекарственного взаимодействия, большинство из них является следствием эффектов на метаболизм системы Р–гликопротеинов или CYP.
Взаимодействия с белками–переносчиками
системы Р–гликопротеина
На апикальной поверхности поверхностных столбчатых клеток тонкого кишечника (равно как и клеток гематоэнцефалического барьера, почек, печеночных протоков и т.д.) имеются системы мембраносвязанных белков–переносчиков, в частности, Р–гликопротеин. Работа этих систем также может повлиять на характер распределения лекарственного препарата [29]. Спектр субстратов, ингибиторов и индукторов этих белков крайне широк и включает такие медикаментозные средства, как дигоксин, циметидин, такролимус, нифедипин, кетоконазол, амитриптилин [20]. Функционирование переносчиков системы Р–гликопротеина также сказывается на доступности пероральных препаратов для интестинального фермента CYP3А4, который задействован в метаболизме целого ряда лекарственных средств, в том числе циклоспорина и фелодипина [30].
Результаты опытов in vitro в культуре клеток Сасо–2 свидетельствуют о том, что ИПП способны взаимодействовать (в различной степени) с белками системы Р–гликопротеина. Омепразол, лансопразол и пантопразол не только являются субстратами для этих белков, но и подавляют опосредованную Р–гликопротеином элиминацию дигоксина (омепразол, пантопразол и лансопразол ингибируют процесс выведения дигоксина на 50% в концентрациях 17,7, 17,9 и 62,8 мкмоль/л соответственно) [29]. Следовательно, не исключен вариант лекарственного взаимодействия ИПП с медикаментозными средствами – субстратами, ингибиторами и ин­дук­торами Р–гликопротеина [20].
Система цитохрома Р450 (CYP)
Метаболизм лекарственных препаратов позволяет сделать их более гидрофильными и легче секретируемыми с мочой или желчью. Большинство медикаментозных средств подвергаются I фазе метаболизма, реакции которой катализируют белки системы CYP; в результате образуются продукты биотрансформации, которые либо сразу элиминируются через почки, либо трансформируются в ходе II фазы и лишь затем выводятся [31].
Белки системы CYP представляют собой обширное семейство изоферментов, которые обнаруживаются преимущественно в гепатоцитах и энтероцитах тонкого кишечника, а также в ткани почек, легких, головного мозга и других органов. Большинство реакций метаболизма лекарственных препаратов у человека опосредованы 6 изоферментами CYP: CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 и CYP3A4 [31]. Результаты не­дав­них исследований позволяют предположить, что эти ферменты катализируют процессы биотрансформации, лежащие в основе большинства клинически значимых лекарственных взаимодействий [20].
Анализ такого рода взаимодействий затрудняет тот факт, что на активность системы ферментов CYP оказывает влияние множество факторов – курение, употребление алкоголя, возраст, генетический полиморфизм ферментов, питание и наличие сопутствующих заболеваний. Именно эти факторы отвечают за формирование индивидуальных особенностей работы белков системы CYP и определяют восприимчивость организма к лекарственному взаимодействию [21].
В большинстве случаев лекарственные взаимодействия являются результатом конкурентного ингибирования, при котором два вещества соперничают друг с другом за связывание с одним и тем же сайтом изофермента CYP. Характер и последствия такого взаимодействия зависят от относительной аффинности обоих ингибиторов к сайту связывания фермента CYP – препарат с более высокой аффинностью связывается с белком, препятствуя тем самым биотрансформации субстрата с меньшей аффинностью [20]. Большинство лекарственных взаимодействий, возникающих как результат конкурентного ингибирования цитохромов, опосредованы изоферментами двух основных локусов – тонкого кишечника и печени.
Взаимодействие с интестинальными CYP. Тор­мо­жение активности интестинальных CYP может индуцировать изменения т.н. метаболизма «первого прохождения». Доминирующим изоферментом в энтероцитах ки­шечника является CYP3A4, и ему принадлежит важное значение как фактору, детерминирующему биодоступность препарата [30]. Выраженный эффект «первого прохождения» через стенку кишечника при пероральном приеме характерен для циклоспорина [32], мидазолама [33] и нифедипина [20]. Следовательно, ингибирование интестинального CYP3A4 играет важную роль в лекарственном взаимодействии с участием этих медикаментозных средств [34].
Конкретные клинические последствия конкурентного ингибирования интестинального CYP3A4 определяются относительной аффинностью обоих препаратов к изоферменту. Так, если аффинность лекарственного вещества к CYP3A4 низка (как, например, у фелодипина [35] или симвастатина [36]), то его метаболизм в стенке кишечника подавляется, что в несколько раз увеличивает его биодоступность при пероральном приеме. В то же время препараты с большей, чем у ИПП, аффинностью к CYP3A4 (кетоконазол, кларитромицин) способны вызвать супрессию метаболизма ИПП, повышая тем самым уровень последнего в плазме крови [15]. Такие изменения биодоступности одновременно используемых препаратов (хотя и неспецифические, о чем свидетельствуют результаты клинических испытаний) могут сказаться на их эффективности или частоте возникновения побочного действия.
Взаимодействие с печеночными CYP. Индукция или подавление активности изоферментов системы CYP в печени могут нарушать печеночный клиренс. ИПП преимущественно метаболизируются в печени изоферментами CYP2C19 и CYP3A4 [15]. Li и соавт. [37] сравнивали эффективность и специфичность 5 используемых сегодня в клинической практике ИПП как ингибиторов четырех ферментов CYP (CYP2C9, 2C19, 2D6 и 3A4) на препаратах печеночных микросом человека, обработанных рекомбинантным CYP2C19. Профиль супрессии во всех случаях оказался одинаковым, при этом лансопразол проявил себя наиболее мощным ингибитором CYP2C19 in vitro (Ki=0,4–1,5 мкМ), а пантопразол – CYP2C9 (Ki=6 мкМ).
По данным другого исследования [38], R– и S–энантиомеры лансопразола метаболизируются в большей степени, чем пантопразол (это было установлено на препаратах печеночных микросом человека, обработанных рекомбинантным CYP3A4). Но если применялся рекомбинантный CYP2C19, то скорость метаболизма эзомепразола и пантопразола уравнивалась, и лишь R–омепразол метаболизировался быстрее.
Хотя данные, полученные in vitro, свидетельствуют о различной эффективности ИПП и возможности лекарственного взаимодействия, это вовсе не означает, что аналогичные наблюдения будут сделаны и in vivo. Так, мощное конкурентное ингибирование CYP2C9 под действием пантопразола (продемонстрированное с помощью 4 –гидроксилирования диклофенака как маркерной реакции на активность CYP2C9) никак не проявляется клинически. Доказано, что in vivo пантопразол не оказывает никакого эффекта на фармакокинетику диклофенака – ни за счет конкурирования с CYP2C9, ни за счет ослабления секреции соляной кислоты. Дикло­фе­нак также не затрагивает фармакокинтеику пантопразола [39]. Более мощное конкурентное ингибирование CYP2C19 лантопразолом (по сравнению с омепразолом и эзомепразолом) не имеет клинической симптоматики. Так, сывороточная концентрация фенитоина – субстрата CYP2C19 на фоне одновременного назначения лансопразола в дозе 60 мг существенным образом не меняется [40].
Помимо взаимодействия со специфическими изоферментами CYP, необходимыми для их собственного метаболизма, ИПП также способны модифицировать ак­тивность и других изоферментов CYP. Например, и омепразол, и лансопразол индуцируют CYP1A2 [41], что может повлиять на биотрансформацию других препаратов – теофиллина или варфарина [20]. Однако клинических данных, которые подтверждали бы существование таких видов лекарственного взаимодействия, пока недостаточно.
Профили взаимодействия
отдельных ИПП
Профили лекарственного взаимодействия омепразола и пантопразола изучались достаточно активно, в то время как эзомепразолу, лансопразолу и рабепразолу посвящено меньше исследований. Полученные данные суммированы в таблице 1. Взаимодействия, значимые для группы препаратов в целом, т.е. обусловленные фармакодинамическим влиянием ИПП на рН желудочного сока, далее рассматриваться не будут, поскольку описаны выше.
Есть сведения, что у пациентов, получающих ИПП и варфарин (или фенпрокоумон), повышается величина международного нормализованного отношения (МНО) и протромбиновое время. Следовательно, эти показатели могут быть использованы в качестве инструментов мониторинга состояния больных, находящихся на терапии ИПП и варфарином или фенопрокоумоном.
Омепразол
Омепразол метаболизируется практически полностью, т.е. в неизмененном виде этот препарат почти не экскретируется с мочой или калом [99]. Ключевой реакцией I фазы метаболизма является образование 5–гидроксиомепразола, катализируемое CYP2C19 и CYP3A4. Кроме того, под действием CYP2C19 омепразол превращается в омепразола гидросульфон, а под действием CYP3A4 – в омепразола сульфон [100]. Аффин­ность омепразола к CYP2C19 почти в 10 раз больше, чем к CYP3A4 [99]. С учетом такой быстрой и интенсивной биотрансформации, опосредованной изоферментами CYP2C19 и CYP3A4, не исключена вероятность возникновения лекарственного взаимодействия с другими субстратами или ингибиторами этих ферментов.
Ярким примером такого вида взаимодействий является замедление клиренса диазепама, вызванное омепразолом. У «быстрых метаболизаторов» конкурентное ингибирование CYP2C19 омепразолом в дозе 20 мг/сут. уменьшает клиренс диазепама (при однократном внутривенном введении) на 20–26% [65,66,68]. Как и следовало ожидать, у «медленных метаболизаторов», характеризующихся значительно сниженной ак­тив­ностью CYP2C19, взаимодействия такого рода не возникают [65,68].
Блокирование CYP2C19 омепразолом (10 мкмоль/л) in vitro ингибирует биотрансформацию прогуанила (20 мкмоль/л) в циклогуанил, а in vivo замедляет клиренс прогуанила после его перорального приема примерно на треть [101]. У «экстенсивных метаболизаторов» омепразол в дозе 40 мг также тормозит CYP2C19–за­висимые реакции метаболизма антидепрессанта моклобемида (300 мг) [102].
Потенциально конкурентное ингибирование CYP2C19 омепразолом нарушает метаболизм фенитоина и варфарина. Так, результаты фармакокинетических исследований, проведенных на клинически здоровых добровольцах, свидетельствуют о том, что омепразол (40 мг/сут.) увеличивает AUC фенитоина при пероральном использовании на 19% [84] и замедляет сывороточный клиренс фенитоина после внутривенного введения также на 19% [66]. Однако через 3 недели на фоне одновременного назначения больным эпилепсией омепразола (20 мг/сут.) не было выявлено никаких значимых изменений постоянного уровня фенитоина в плазме крови [85]. Согласно другим данным омепразол в дозировке 20 мг/сут. оказывает стереоселективный эффект на метаболизм в печени варфарина, препятствуя CYP2C19–опосредованной трансформации R (но не S)–энантиомера. Как следствие, в крови незначительно нарастает среднее содержание R–варфарина [96,97]. Лишь в одном из этих исследований отмечалось достоверное увеличение времени свертывания на фоне сопутствующего применения омепразола [96]. Другие исследователи также сообщают об усилении антикоагулянтных свойств варфарина [101] и фенпрокоумона [82] под действием омепразола.
Также оценивалось влияние омепразола на фармакокинетику антацидов, метопролола, НПВП, препаратов железа [104] и теофиллина, но проведенный анализ не выявил никаких клинически значимых изменений [44,69,77,80,93,104]. Упоминается о замедлении клиренса метотрексата на фоне терапии омепразолом, что потенциально может спровоцировать избыточное накопление этого токсичного препарата [105,106].
Изучение последствий сочетанного использования циклоспорина и омепразола дает противоречивые ре­зуль­таты. Хотя при приеме омепразола наблюдается по­вышение сывороточной концентрации циклоспорина [56], данные, полученные в ходе систематических клинических испытаний, не столь однозначны. Так, в процессе лечения омепразолом (без конкретной дозировки) у пациентов, перенесших трансплантацию сердца, доза принимаемого циклоспорина оказалась ниже, чем показатель его концентрации, т.е. при назначении той же самой дозы на фоне омепразола достигалось более высокое содержание циклоспорина в крови [57]. Однако после трансплантации почки омепразол в дозе 20 мг не влиял на сывороточный уровень циклоспорина [58].
Влияние других препаратов на фармакокинетику омепразола. Лекарственные вещества с высокой аф­финностью к CYP3A4, например, кетоконазол [107], кларитромицин [108] и моклобемид [109], способны модифицировать биодоступность омепразола, увеличивая его уровень в плазме крови. Однако клинически это проявляется только при недостаточности CYP2C19 (т.е. у «слабых метаболизаторов»), поскольку метаболизм омепразола в таких случаях идет по CYP3A4–зависимому пути. На фоне приема 100–200 мг/сут. кетоконазола в течение 4 дней у всех больных блокируется образование омепразола сульфона, а у «слабых метаболизаторов» в 2 раза повышается сывороточная концентрация омепразола [107]. Использование кларитромицина (400 мг 2 р./сут. в течение 3 последовательных дней) ведет к резкому нарастанию содержания омепразола в крови клинически здоровых лиц, в то время как титр омепразола сульфона падает [108].
С другой стороны, у больных, получающих гинкго билоба в дозировке 140 мг 2 р./сут. (12 дней) [110] или зверобой (300 мг ежедневно в течение 14 дней) [111], которые являются индукторами CYP2C19, отмечается значительное понижение сывороточных уровней и омепразола, и омепразола сульфона. У «экстенсивных метаболизаторов» (но не «слабых») флувоксамин (50 мг/сут. в течение 6 дней) – ингибитор CYP2C19 и CYP1A2 – тормозит метаболизм омепразола при однократном пероральном приеме этого лекарственного средства в дозе 40 мг, свидетельствуя тем самым о его активации через CYP2C19 [112].
Комбинированные оральные контрацептивы, со­дер­жащие в своем составе этинилэстрадиол, уменьшают активность CYP2C19 и увеличивают AUC омепразола, назначаемого клинически здоровым женщинам в однократной дозе 40 мг. При этом этинилэстрадиол не оказывает тормозного влияния на образование омепразола сульфона, катализируемое CYP3A4 [113].
Таким образом, хотя и имеются данные о лекарственных взаимодействиях с участием омепразола, далеко не все варианты таких взаимодействий проявляются клинически. Причина же того, что лекарственные взаимодействия с участием омепразола возникают чаще, чем с другими ИПП, может быть достаточно простой. Омепразол, появившийся на фармацевтическом рынке еще в 1989 г., применяется в клинической практике дольше всех ИПП, и число случаев лекарственного взаимодействия с участием этого препарата со временем пропорционально возрастает.
Эзомепразол
Рацемический омепразол и эзомепразол, S–энан­тио­мер омепразола без примесей, являются продуктами одних и тех же метаболических трансформаций. Однако S–энантиомер метаболизируется по несколько иному пути, чем R–омепразол. Согласно результатам опытов in vitro на микросомах печени человека, метаболизм S–омепразола примерно на 70% опосредован CYP2C19 и на 30% – CYP3A4, а R–энантиомер на 90% метаболизируется CYP2C19 [114].
Эти данные, полученные in vitro, коррелируют с результатами исследований по фармакокинетике омепразола и эзомепразола в клинически здоровых добровольцев [61]. Так, на фоне приема рацемического омепразола содержание в плазме гидрокси–метаболитов, образование которых обусловлено CYP2C19, оказывается выше, чем при использовании эзомепразола в той же самой дозировке. Если определять уровень сульфоновых метаболитов, образование которых катализирует CYP3A4, то будет наблюдаться обратная картина [105]. Более того, общий метаболический клиренс эзомепразола несколько ниже по сравнению с рацематом, результатом чего является более высокая сывороточная концентрация S–изомера относительно рацемата при их назначении в одинаковых дозах [62].
Эзомепразол (и в меньшей степени рацемический омепразол) ингибирует собственный метаболизм под действием CYP2C19 [115], что необходимо принимать во внимание, оценивая лекарственные взаимодействия с участием этого ИПП. В течение первых 5–7 дней лечения такой блокирующий эффект нарастает [116,117], а затем стабилизируется; этим можно объяснить различия, наблюдаемые в ходе исследований с применением однократных или повторных доз препарата.
По–видимому, эзомепразол лишен потенциала взаимодействовать с веществами, которые метаболизируются преимущественно CYP1A2, CYP2A6, CYP2C9, CYP2D6 или CYP2E1 [62]. С другой стороны, результаты исследований по лекарственным взаимодействиям с участием фенитоина и R–варфарина свидетельствуют о том, что эзомепразол все–таки способен взаимодействовать с препаратами, метаболизируемыми CYP2C19, однако без клинических проявлений. Тем не менее ингибитор CYP3A4 кларитромицин почти двукратно увеличивает содержание эзомепразола в крови [62].
Недавно было показано, что многократное применение эзомепразола (40 мг) ведет к подъему уровня диазепина уже через 4 часа после его однократного введения в дозе 0,1 мг/кг [63]. Клинически такие фармакокинетические эффекты манифестировали нарушением угловой скорости (оцениваемой по саккадированным движениям глаз), времени реакции выбора и возникновению эпизодов т.н. микросна. Предположено, что подобного рода влияние омепразола на диазепам может спровоцировать нарушение моторной координации и внимания у пациентов, получающих терапию обоими препаратами.
Таким образом, несмотря на незначительные (количественные, но не качественные) различия путей метаболизма энантиомеров омепразола, характер лекарственного взаимодействия с участием эзомепразола и рацемического омепразола не имеет принципиальных отличий. В связи с этим необходимо обратить внимание на то, что рекомендуемая дозировка рацемата в качестве средства для лечения заболеваний желудка с нарушением кислотности в два раза меньше дозы чистого S–энантиомера.
Пантопразол
Пантопразол метаболизируется CYP2C19 и CYP3A4, однако из всех ИПП он обладает минимальной аффинностью к этим ферментам [118]. В отличие от большинства продуктов биотрансформации I фазы других ИПП, первичный метаболит пантопразол (4–гидроксипантопразол, образуемый под влиянием системы CYP) далее вступает во II фазу биотрансформации, которая заключается в конъюгации с сульфатом и протекает в цитозоле. Такой конъюгацией (относительно ненасыщаемый путь метаболизма лекарств) зачастую объясняют более ограниченный потенциал пантопразола участвовать в лекарственных взаимодействиях по сравнению с другими ИПП [6,119,120].
Испытания на клинически здоровых добровольцах и пациентах с диагностированными заболеваниями не выявили никаких значимых метаболических взаимодействий между пантопразолом и антацидами [45], феназоном (антипирином) [48], кофеином [51], карбамазепином [53], цинакальцетом [60], кларитромицином [121], циклоспорином [59], диазепамом [67], диклофенаком [39], β–ацетилдигоксином [71], этанолом [74], глибенкламидом [75], натрия левотироксином [76], метопрололом [78], напроксеном [79], нифедипином пролонгированного высвобождения [81], оральными контрацептивами [55], фенпрокоумоном [83], фенитоином [86], пироксикамом [88], такролимусом [90], теофиллином [94] или варфарином [98].
В дозировке 40 мг пантопразол взаимодействует с цизапридом (20 мг), однако клинически это никак не проявляется [122].
Сообщается о выраженной миалгии у пациента с лимфомой, развившейся на фоне сочетанной терапии метотрексатом (15 мг в инъекциях) и пантопразолом (20 мг/сут.), который принимался больным по поводу пищевода Барретта. Установлено, что общая экспозиция (AUC144) метаболита метотрексата 7–гидроксиметотрексата при одновременном употреблении пантопразола оказалась примерно на 70% выше, чем в отсутствие пантопразола. Период полужизни этого метаболита возрастал в два раза (81,4 часа вместо 36,4 часа), свидетельствуя тем самым о нарушении процессов не только метаболизма, но и элиминации продукта почками вследствие такого взаимодействия [123]. Однако пока непонятно, вызван ли этот эффект ИПП или другими факторами, поскольку больше сообщений о подобных случаях не было. Пантопразол не оказывает никакого влияния на уровень циклоспорина у лиц, перенесших трансплантацию почки [59]. Следовательно, пантопразол можно давать реципиентам донорской почки, не опасаясь, что это скажется на иммуносупрессивном действии циклоспорина.
Недавно было завершено исследование, в ходе которого сравнивались эффекты многократно повторяющихся ежедневных доз пантопразола (40 мг) и эзомепразола (40 мг) на фармакокинетику диазепама в однократной дозе 0,1 мг/кг. На фоне приема эзомепразола AUC120 диазепама оказалась на 28% выше, чем на фоне приема пантопразола. Концентрация диазепама начинала подниматься поздно (>12 часов), а по раннему повышению Cmax диазепама была выявлена разница в 34% в пользу эзомепразола по сравнению с пантопразолом, что связано только с влиянием этих препаратов на фармакодинамику диазепама. Клинические проявления в виде изменения времени реакции выбора и возникновения эпизодов микросна были выражены более ярко в случае эзомепразола (p<0,0028 и p<0,0073 соответственно) [63].
Таким образом, пантопразол характеризуется низким потенциалом взаимодействия с другими лекарственными веществами.
Лансопразол
Лансопразол метаболизируется преимущественно изоферментами CYP2С19 и CYP3A4 [124]. Согласно данным опытов in vitro, лансопразол и омепразол конкурентно ингибируют CYP2C19 в равной степени. Однако in vivo лансопразол практически не затрагивает метаболизм лекарств, которые являются субстратами CYP2C19 (таких как диазепам) [64].
Клинически значимых взаимодействий между лансопразолом и феназоном [47], диазепамом [64], магалдратом [42], фенитоином [40], преднизолоном [43], пропранололом [43] и варфарином [125] выявлено не было. По–видимому, это справедливо и в отношении оральных контрацептивов, хотя первые исследования дали противоречивые результаты [54], а в дальнейшем не было представлено никаких доказательств того, что лансопразол в дозировке 60 мг влияет на биодоступность оральных контрацептивов [126].
При изучении эффекта лансопразола (30 мг или 60 мг) в отношении биодоступности теофиллина удалось продемонстрировать уменьшение AUC на 10–13% [91,92,127], но клинических проявлений зарегистрировано не было [91,92]. Клиренс теофиллина на фоне лечения лансопразолом в дозировке 60 мг [127] также не повышался [91].
Лансопразол (30 мг/сут. в течение 4 дней) снижает клиренс такролимуса при его пероральном приеме, что ведет к резкому подъему концентрации такролимуса в крови [128]. Этот эффект выражен более ярко у лиц с мутантными аллелями CYP2C19, поскольку оба лекарственных препарата в дальнейшем метаболизируются CYP3A4 [128,129].
В зависимости от генотипа CYP2C19 ингибитор этого изофермента флувоксамин оказывает выраженное влияние на метаболизм лансопразола. У «экстенсивных метаболизаторов» – гомозигот или гетерозигот по CYP2C19 – сывороточный уровень лансопразола (назначаемого в дозировке 60 мг) значительно возрастает на фоне применения 50 мг флувоксамина, в то время как у «слабых метаболизаторов» этого не наблюдается [130].
Таким образом, несмотря на то, что профиль взаимодействия лансопразола исследован не так полно в сравнении с омепразолом или пантопразолом, можно сделать вывод, что это лекарственное вещество не участвует во взаимодействиях, манифестирующих клинически.
Рабепразол
Опубликовано несколько работ, касающихся профиля лекарственного взаимодействия рабепразола, в большинстве из них он упоминается как один из ИПП, для которых характерен группоспецифический эффект в отношении рН желудочного сока на фоне взаимодействия с дигоксином [87] и кетоконазолом [131].
Основной путь метаболизма рабепразола – неферментативное восстановление до тиоэфира [132]. Следовательно, реакции окислительного метаболизма, катализируемые CYP2C19 и CYP3A4, играют минимальную роль в процессах биотрансформации этого препарата. Более того, результаты исследований in vitro свидетельствуют о том, что рабепразол обладает низким потенциалом блокировать CYP2C19 [68]. Однако характер метаболизма рабепразола по меньшей мере частично определяется генетическим полиморфизмом CYP2C19. После приема однократной дозы рабепразола 20 мг средняя Cmax и AUC24 у «слабых метаболизаторов» S–мефенитоина оказываются достоверно выше, чем у гомозиготных «экстенсивных метаболизаторов» (относительное соотношение для AUC24 между гомозиготными «экстенсивными метаболизаторами» и «слабыми метаболизаторами» составляет 4,3:1) [132]. Рабепра­зол характеризуется низкой аффинностью к изоферментам CYP, поэтому его способность вступать во взаимодействия с лекарствами, метаболизм которых опосредован этими ферментами, минимальна [15].
Обнаружено, что рабепразол не участвует в метаболических лекарственных взаимодействиях с теофиллином [95], варфарином [95], фенитоином [87], такролимусом [89] и антацидами [46]. В дозе 20 мг он оказывает заметное влияние на фармакокинетику десметилового метаболита диазепама лишь у «слабых метаболизаторов» 4
Новости/Конференции
Все новости
Новости/Конференции
Все новости
Ближайшие конференции
Все мероприятия

Данный информационный сайт предназначен исключительно для медицинских, фармацевтических и иных работников системы здравоохранения.
Вся информация сайта www.rmj.ru (далее — Информация) может быть доступна исключительно для специалистов системы здравоохранения. В связи с этим для доступа к такой Информации от Вас требуется подтверждение Вашего статуса и факта наличия у Вас профессионального медицинского образования, а также того, что Вы являетесь действующим медицинским, фармацевтическим работником или иным соответствующим профессионалом, обладающим соответствующими знаниями и навыками в области медицины, фармацевтики, диагностики и здравоохранения РФ. Информация, содержащаяся на настоящем сайте, предназначена исключительно для ознакомления, носит научно-информационный характер и не должна расцениваться в качестве Информации рекламного характера для широкого круга лиц.

Информация не должна быть использована для замены непосредственной консультации с врачом и для принятия решения о применении продукции самостоятельно.

На основании вышесказанного, пожалуйста, подтвердите, что Вы являетесь действующим медицинским или фармацевтическим работником, либо иным работником системы здравоохранения.

Читать дальше