Возможности применения раман-флуоресцентной спектроскопии в оториноларингологии

Ключевые слова

Читайте в новом номере

Импакт фактор - 0,584*

*пятилетний ИФ по данным РИНЦ

Регулярные выпуски «РМЖ» №6 от 08.04.2015 стр. 317
Рубрика: Оториноларингология

Для цитирования: Свистушкин В.М., Александров М.Т., Пшонкина Д.М., Шевчик Е.А. Возможности применения раман-флуоресцентной спектроскопии в оториноларингологии // РМЖ. 2015. №6. С. 317

Распространенность заболеваний ЛОР-органов, по данным мировой и отечественной статистики, постоянно растет, что обусловлено как антропогенным загрязнением окружающей среды, оказывающим выраженное воздействие на формирование популяционного здоровья, так и появлением антибиотикорезистентных штаммов микроорганизмов, а также усилением роли условно-патогенной флоры (энтеробактерии, синегнойная палочка, внутриклеточные возбудители).

По данным Министерства здравоохранения Российской Федерации за 2012 г., в структуре общей заболеваемости взрослого населения Центрального федерального округа (ЦФО) болезни органов дыхания занимают 2-е место (14,8%), уступая только болезням системы кровообращения (18,7%), а в структуре общей заболеваемости детского населения – 1-е место (50,1%), составляя половину от общей заболеваемости. В структуре первичной заболеваемости взрослого и детского населения ЦФО болезни органов дыхания занимают 1-е место, составляя 26,4 и 59,4% соответственно. Гнойно-воспалительные заболевания являются преобладающими в структуре ЛОР-патологий, составляя примерно 40% [11].

Микрофлора, колонизирующая нестерильные отделы верхних дыхательных путей, представлена в основном сапрофитными микроорганизмами, которые практически никогда не вызывают заболеваний у человека, а также условно-патогенными микроорганизмами, способными при неблагоприятных для макроорганизма условиях вызывать гнойный процесс. Как известно, основными возбудителями острых форм оториноларингологических инфекций являются Streptococcus pneumoniae и Haemophilus influenzae, довольно частыми – Moraxella catarrhalis, различные виды стафилококков, стрептококков и др. Условия труда различных профессиональных групп населения также являются фактором, способствующим возникновению острых и формированию хронических ЛОР-заболеваний, что существенно влияет на качество жизни, ее продолжительность, состояние трудоспособности [4]. Таким образом, в последние годы вопросы лечения и предупреждения ЛОР-заболеваний приобрели особую актуальность.

В настоящее время диагностика заболеваний ЛОР-органов перешла на принципиально новый уровень. Еще недавно для диагностики заболеваний оториноларингологами проводились осмотр пациента, рентгенография и простейшие лабораторные исследования. Сегодня в арсенале ЛОР-врача имеется широкий спектр дополнительных инструментальных и лабораторных методов исследования: эндоскопия, различные лабораторные исследования (в т. ч. методом полимеразной цепной реакции, позволяющим безошибочно определить вид возбудителя воспалительного процесса), аудиометрия, тимпанометрия и т. д. Однако все еще остается необходимость создания универсальных, отличающихся простотой выполнения и высокоскоростных методов диагностики, которые способствовали бы более раннему и эффективному началу лечения и улучшению прогноза того или иного заболевания. Эти методы должны быть достоверными, быстрыми и экономически оправданными.

Одним из наиболее перспективных направлений решения указанных проблем является использование лазерного излучения и лазерной медицинской техники. Именно лазерные и компьютеризированные автоматизированные системы считаются основным, приоритетным направлением развития медицинской техники последних лет [6].

Результатом развития технологий лазерной флуоресцентной диагностики является лазерная рамановская диагностика (ЛРД), достоинства которой находят практическое применение в различных областях: биофизике, фармакологии, микробиологии, химической промышленности, медицине. Изучение и развитие фотодинамической диагностики невозможно без знаний физико-химических принципов, лежащих в основе флуоресценции.

Явление флуоресценции было впервые исследовано Гершелем в 1845 г. на растворе сернокислого хинина. Подробно изучено данное явление было Стоксом (1852–1864 гг.), который и дал ему название флуоресценции, т. к. наблюдал его в фиолетовых и зеленых разновидностях дербиширского плавикового шпата (флюорита). Электронная спектроскопия связана с изучением энергетических переходов между различными электронными состояниями атомов и молекул. Электронные спектры многоатомных молекул исследуются обычно как спектры поглощения и спектры люминесценции. Спектры поглощения возникают в результате переходов из основного электронного состояния в возбужденные за счет поглощения квантов электромагнитного излучения, а спектры люминесценции – в результате перехода молекулы из возбужденного состояния в основное с испусканием электромагнитного излучения. Свечение вещества, возникающее при переходе молекул из возбужденного состояния в основное, называют люминесценцией [7].

Люминесценция подразделяется на 2 вида (флуоресценцию и фосфоресценцию) в зависимости от характера электронного состояния [10], из которого молекулы переходят в основное состояние с испусканием электромагнитного излучения, что проиллюстрировано на диаграмме Яблонского (рис. 1).

Способность многих веществ флуоресцировать, фосфоресцировать как в газовой, так и в твердой и жидкой фазах, служит основой для их количественного и качественного анализа. Флуоресцентная спектроскопия является одним из самых высокочувствительных методов, позволяющих детектировать очень низкие концентрации веществ (мкМ, нМ и даже пМ) и отличать одно вещество от другого [8]. Достоинством флуоресцентной спектроскопии является также отсутствие повреждения образца в ходе исследования, т. е. можно работать с нативными препаратами [5].

Вышеуказанные сведения о собственной флуоресценции органических соединений, встречающихся в живой клетке любого организма, послужили основой для разработки нового способа диагностики. Высокая эффективность метода лазерной флуоресцентной диагностики выявлена при индикации аэробной и анаэробной инфекции у детей и взрослых [1].

Диагностический потенциал флуоресценции биологических тканей был впервые описан H. Stubel в 1911 г. Ученый исследовал «родную флуоресценцию» (аутофлуоресценцию) тканей животных при освещении их ультрафиолетовым светом [16]. В 1924 г. французский ученый A. Policard наблюдал красную флуоресценцию порфиринов при исследовании ткани опухоли под лампой Вуда [12]. Спустя несколько лет немецкими исследователями H. Auler и G. Banzer впервые были описаны локализация и флуоресценция экзогенно вводимых в злокачественные опухоли порфиринов [14]. В некоторых исследованиях сообщалось об экзогенном применении HpD, порфиринов и предшественников порфирина для обнаружения опухолевых и неопухолевых поражений в различных органах. HpD – фотосенсибилизатор с улучшенными свойствами, производное гематопорфирина, обозначаемого в англоязычной литературе «HpD», т. к. сам гематопорфирин представляет собой смесь порфиринов и инертных примесей. Производное гематопорфирина в 2 раза токсичнее, чем первоначальный препарат, и обладает в 2 раза более высоким фотодинамическим действием. Впервые HpD было приготовлено S. Schwartz путем обработки гематопорфирина концентрированной серной и уксусной кислотами и применено в клинике Мейо (США) в 1960 г. для выявления опухолей [18].

Возможности применения раман-флуоресцентной спектроскопии в оториноларингологии

В 1960-х и 1970-х гг. для оценки флуоресценции с использованием производных гематопорфирина проводились группы исследований по выявлению новообразований шейки матки [19, 21], пищевода, прямой кишки, бронхов [15, 20], а также в области органов головы и шеи (полости рта, глотки, гортани) [17]. Спектры поглощения и излучения эндогенных флуорохромов представлены на рисунке 2.

В наши дни методы раман-флуоресцентной спектроскопии нашли применение в приборах «ИнСпектр» – портативном рамановском комплексе, с помощью которого можно проводить экспресс-анализ органических и неорганических субстанций (заявка на патент РФ на полезную модель № 2011107305 от 28.02.2011 г.). В течение нескольких секунд проводятся запись спектра исследуемого объекта, определение спектрального положения и относительных интенсивностей рамановских и люминесцентных линий – своего рода «отпечатков пальцев» исследуемой субстанции, поиск и сравнение этих «отпечатков» со спектральной базой данных известных объектов. Для экспресс-анализа не требуется предварительной подготовки или обработки исследуемых объектов («Разработка ЛРД аппаратно-программных комплексов и их модификаций») [1]. Схематически раман-флуоресцентный комплекс «ИнСпектр» изображен на рисунке 3.

Данная методика нашла свое применение в стоматологии, гинекологии и других областях медицины. Так, проводилось исследование in vitro на свежеудаленных по клиническим показаниям зубах. В ходе научной работы было доказано, что применение рамановского рассеяния позволяет определять относительную величину минерализации твердых тканей зуба, эффективность реминерализирующей терапии, проводить дифференциальную диагностику поражений твердых тканей зуба, качественно и количественно диагностировать ведущий этиологический (микробный) фактор развития кариеса зубов, индивидуально выбирать эффективный антисептический дезинфектант [3].

Возможности применения раман-флуоресцентной спектроскопии в оториноларингологии

Возможности применения рамановского рассеяния в гинекологической практике показаны в работе по исследованию спектральных характеристик органов малого таза у женщин, в ходе которой путем анализа рамановского излучения и люминесценции был выявлен ряд особенностей, отличающих ткань опухоли от нормальной ткани [2].

Метод гигантского рамановского рассеяния на подложках с металлическими наношариками серебра стал применяться при экспресс-индикации микроорганизмов: позволял определить их видовую принадлежность, чувствительность к антимикробным препаратам (ускоренное определение), увидеть сигнал от одиночной бактерии при облучении ее лазерным светом [3].

Возможности ЛРД, позволяющие определить микробный пейзаж, особенности гистологического строения тканей, степень выраженности воспалительной реакции, могут быть с успехом применены в лечении и диагностике широкого спектра ЛОР-заболеваний. Одной из наиболее распространенных патологий среди болезней уха, горла и носа является хронический тонзиллит (ХТ).

Небные миндалины выполняют важные функции в иммунной системе человеческого организма. ХТ занимает лидирующую позицию в структуре ЛОР-патологии. Следует отметить, что ХТ, являясь постоянным очагом инфекции в организме, влияет на различные его функции. Социальная значимость данной патологии подчеркивается тем, что обострения ХТ являются частой причиной временной нетрудоспособности, а в случае развития осложнений могут приводить к инвалидизации и даже смерти пациентов.

Инфекция в небных миндалинах часто является пусковым механизмом для патологических изменений сердечно-сосудистой системы, почек, соединительной ткани, эндокринных органов [9]. Таким образом, проблема ХТ затрагивает не только оториноларингологию, но и другие области медицины.

Возможности применения раман-флуоресцентной спектроскопии в оториноларингологии

Зачастую имеющейся клинической диагностики ХТ недостаточно. Это заставляет прибегать к дополнительным методам обследования пациентов, а трудности диагностики обусловливают необходимость использования дополнительных лабораторных методов.

ЛРД является перспективным методом, позволяющим оценить выраженность воспалительных процессов, а также их точную микробиологическую характеристику (если таковая имеется). Однако для проведения сравнительного анализа необходимо выявить закономерности и особенности спектров интактных тканей ЛОР-органов, а именно глотки и миндалин, оценить микробиологический пейзаж тканей миндалины, что и явилось целью нашей работы.

В ходе клинического исследования на базе кафедры болезней уха, горла и носа Первого МГМУ им. И.М. Сеченова проводится изучение спектральных характеристик интактных тканей ЛОР-органов – небных миндали и задней стенки глотки. В исследовании приняли участие 50 человек в возрасте 16–59 лет.

В результате исследования создана база спектральных характеристик интактных тканей задней стенки глотки и миндалин, которая позволит определить возможности использования аппаратно-программного комплекса «ИнСпектр» для экспресс-диагностики ХТ, а также динамического мониторинга эффективности лечения.


Литература
  1. Александров М.Т., Таубинский И.М., Козьма С.Ю. Способ для обнаружения и оценки концентраций анаэробных бактерий в биологическом субстрате (Патент РФ № 97100364 от 21.01.1997).
  2. Александров М.Т., Зуев В.М., Кукушкин В.В. и соавт. Исследование спектральных характеристик органов малого таза у женщин и их клиническое значение // Онкогинекология. 2013. № 3. С. 61–67.
  3. Александров М.Т., Зубов С.В., Березинская А.С. и соавт. Экспериментально-теоретическое обоснование принципов и особенностей применения метода лазерно-конверсионной диагностики для оценки состояния твердых тканей зуба в норме и при патологии (кариес) // Российский стоматологический журнал. 2013. № 4. С. 6–10.
  4. Вахабов А.А., Хидиров Б.Х., Гариб М.Ю. Изучение состояния ЛОР-органов у работников промышленных предприятий г. Самарканда и области: Мат-лы научн. конф. проф.-препод. состава СамМИ. Ташкент, 1980. С. 150.
  5. Векшин Н.Л. Флюоресцентная спектроскопия биополимеров. Пущино: Фотон-век, 2006. 168 с.
  6. Евстигнеев А.Р. Лазерные фотометры для экспериментально-клинической медицины // Электронная промышленность. 1987. № 1.
  7. Левшин Л.В., Салецкий А.М. Оптические методы исследования молекулярных систем. Ч. 1. Молекулярная спектроскопия. М.: Изд-во МГУ, 1994.
  8. Медицинская технология «Применение экспресс-метода лазерной флуоресценции для определения чувствительности микроорганизмов к антимикробным препаратам» от 07.08.2007 (№ ФС-2007/158).
  9. Овчинников А.Ю., Славский А.Н., Фетисов И.С. Хронический тонзиллит и сопряженные с ним заболевания // РМЖ. 1999. Т. 7. № 7.
  10. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М.: Мир, 2003.
  11. Соусова Е.В. Эпидемиология гнойно-септических инфекций ЛОР-органов в условиях амбулаторно-поликлинических учреждений: Автореф. дисс... канд. мед. наук. СПб., 1997. 14 с.
  12. Policard А. Etudes sur les aspects offerts par des tumeurs experimentales examines a la lumiere de Wood // CR Soc Biol. 1924. Vol. 91. Р. 1423–1424.
  13. Wagnieres G.A., Star W.M., Wilson B.C. In vivo fluorescence spectroscopy and imaging for oncological applications // Photochem Photobiol. 1998. Vol. 68. P. 603–632.
  14. Auler Н., Banzer G. Untersuchungen uber die Rolle der Porphyrine bei geschwulstkranken Menschen und Tieren // Z Krebsforschung. 1942. Vol. 53. Р. 65–68.
  15. Gregorie H.B., Horger Jr.E.O., Ward J.L., Green J.F., T. Richards, Robertson H.C., Stevenson Jr. and T.B. Hematoporphyrin-derivative fluorescence in malignant neoplasms // Ann Surg. 1968. Vol. 167 (6). Р. 820–828.
  16. Stubel Н. Die Fluoreszenz tierischer Gewebe in ultraviolettem Licht // Pflugers Arch Physiol. 1911. Vol. 142 (1). Р. 1–14.
  17. Leonard J.R., Beck W.L. Hematoporphyrin fluorescence: an aid in diagnosis of malignant neoplasms // Laryngoscope. 1971. Vol. 81 (3). Р. 365–372.
  18. Lipson R.L., Baldes E.J., Olsen A.M. The use of a derivative of hematoporphyrin in tumor detection // J Natl Cancer Inst. 1961. Vol. 26. Р. 1–8.
  19. Gray M.J., Lipson R. Maeck J. V., Parker L. Romeyn D. Use of hematoporphyrin derivative in detection and management of cervical cancer // Am J Obstet Gynecol. 1967. Vol. 99 (6). Р. 766–771.
  20. Lipson R. L., Baldes E.J., Gray M.J. Hematoporphyrin derivative for detection and management of cancer // Cancer. 1967. Vol. 20 (12). Р. 2255–2257.
  21. Lipson R. L., Pratt J.H., Baldes E.J., Dockerty M.B. Hematoporphyrine Derivative for Detection of Cervical Cancer // Obstet Gynecol. 1964. Vol. 24. Р. 78–84.

Только для зарегистрированных пользователей

зарегистрироваться

Оцените статью


Поделитесь статьей в социальных сетях

Порекомендуйте статью вашим коллегам

Предыдущая статья
Следующая статья

Авторизируйтесь или зарегистрируйтесь на сайте для того чтобы оставить комментарий.

зарегистрироваться авторизоваться
Наши партнеры
Boehringer
Jonson&Jonson
Verteks
Valeant
Teva
Takeda
Soteks
Shtada
Servier
Sanofi
Sandoz
Pharmstandart
Pfizer
 OTC Pharm
Lilly
KRKA
Ipsen
Gerofarm
Gedeon Rihter
Farmak