Статистический анализ изображений макро- и микропрепаратов ткани легких и кишечника у больных ВИЧ-инфекцией на стадии вторичных заболеваний

Импакт фактор - 0,628*

*Импакт фактор за 2018 г. по данным РИНЦ

Журнал входит в Перечень рецензируемых научных изданий ВАК.

Ключевые слова
Похожие статьи в журнале РМЖ

Читайте в новом номере

РМЖ «Медицинское обозрение» №9(I) от 11.09.2019 стр. 38-42
Рубрика: Болезни дыхательных путей Инфекция

По данным патоморфологов, в секционном материале больных с сочетанной инфекцией ВИЧ и туберкулезом, как правило, присутствуют характерные деструктивные изменения, однако на настоящий момент в подобных работах изменения в органах и тканях представлены в основном на описательном уровне и носят субъективный характер (наличие или отсутствие того или иного морфологического признака).

Цель исследования: оценка величины различий ряда макро- и микропрепаратов для определения возможности применения формальных характеристик цветности изображения в диагностике степени поражения тканей легких и кишечника у пациентов с ВИЧ-инфекцией на стадии вторичных заболеваний.

Материал и методы: проанализированы истории болезни 13 больных с летальным исходом с диагнозом "ВИЧ-инфекция" на стадии вторичных заболеваний (классификация В.И. Покровского и соавт., 2006) с преимущественным поражением органов дыхания, находившихся на стационарном лечении в ГБУЗ ИКБ № 2 ДЗМ в 2013Р2016 гг. Для анализа были взяты изображения макро- и микропрепаратов секционного материала тканей легких и кишечника (8 макро- и 22 микропрепарата) больных ВИЧ-инфекцией на стадии вторичных заболеваний. Статистический анализ данных проводился программой Gradient, рассчитывающей распределение по цвету точек изображения и скорость изменения цвета точек при изменении их положения (автор программы - д.ф.-м.н. А.Н. Герасимов).

Результаты исследования: при сравнении функции плотности распределений по яркости цвета для пар фрагментов одного изображения с парами фрагментов других изображений выявлено значительно больше различий при сравнении фрагментов в рамках одного изображения. Сравнение фрагментов изображений микропрепаратов ткани легких пациентов с бактериальной пневмонией выявило меньше различий, чем сравнение изображений препаратов пациентов с бактериальной пневмонией и другими вариантами поражений легких, а также сравнение других вариантов небактериальной этиологии друг с другом.

Заключение: полученные нами данные позволяют разработать автоматизированную методику, которая на предварительном этапе поможет распознать характерные изменения для каждой нозологии.

Ключевые слова: ВИЧ-инфекция, туберкулез, бактериальная пневмония, легкие, кишечник, компьютерная томография, изображение, градиент.


Для цитирования: Арутюнова Д.Д., Герасимов А.Н., Умбетова К.Т. и др. Статистический анализ изображений макро- и микропрепаратов ткани легких и кишечника у больных ВИЧ-инфекцией на стадии вторичных заболеваний. РМЖ. Медицинское обозрение. 2019;9(I):38-42.

Statistical analysis of macro- and micro-specimen images in lung and intestinal tissue in HIV-patients at the deuteropathy stage

D.D. Arutyunova1, A.N. Gerasimov1, K.T. Umbetova1, E.Yu. Burdova1, O.A. Tishkevich2, O.V. Darvina1, E.V. Volchkova1

 

1Sechenov University, Moscow

2Clinical Hospital for Infectious Diseases No. 2, Moscow

 

As a rule, there are distinctive destructive changes, according to pathologist data on patient’s autopsy material co-infected with HIV and tuberculosis. However, nowadays in such works, changes in organs and tissues are presented mainly at a descriptive level and have a subjective nature (presence/absence of one or another morphological character).

Aim: to estimate the magnitude of differences between macro- and micro-specimen number for determining the possibility of applying the image color formal characteristics in the diagnosis of the damage degree to lung and intestinal tissues in HIV-patients at the deuteropathy stage.

Patients and Methods: case histories of 13 HIV-patients with fatal outcome diagnosed at deuteropathy stage (classification byКV.I.КPokrovsky et al., 2006) with primary damage to the respiratory system, hospitalized in Clinical Hospital for Infectious Diseases No. 2 from 2013 to 2016, were analyzed. For analysis, macro- and micro-specimen images of lung and intestinal tissues autopsy material were taken (8 macro- and
22 micro-specimen) in HIV-patients at deuteropathy stage. Data statistical analysis was carried out by the gradient program, which calculates the distribution by the image point’s color and the change speed of the point’s color when their position changes (the program was proposed by Dr. A.N.КGerasimov).

Results: significantly more differences were revealed when comparing fragments within one image when comparing the function of the color brightness density distribution for fragment pairs of one and other images. Fragments comparison of micro-specimen images of lung tissue in patients with bacterial pneumonia revealed fewer differences than fragments comparison of specimen images in patients with bacterial pneumonia and other variants of lung lesions, as well as between other variants of non-bacterial etiology with each other.

Conclusion: received data allow developing an automated technique that will help to recognize the characteristic changes for each nosology at the preliminary stage.

Keywords: HIV-infection, tuberculosis, bacterial pneumonia, lungs, intestine, computed tomography, image, gradient.

For citation: Arutyunova D.D., Gerasimov A.N., Umbetova K.T. et al. Statistical analysis of macro- and micro-specimen images in lung and intestinal tissue in HIV-patients at the deuteropathy stage. RMJ. Medical Review. 2019;9(I):38-42.

В статье представлены результаты исследования, посвященного оценке различий ряда макро- и микропрепаратов для определения возможности применения формальных характеристик цветности изображения в диагностике степени поражения тканей легких и кишечника у пациентов с ВИЧ-инфекцией на стадии вторичных заболеваний


Введение

Одной из основных современных проблем отечественного здравоохранения является туберкулезная инфекция. На фоне снижения общего уровня регистрируемой заболеваемости в России среди вновь выявленных случаев этого заболевания увеличивается доля больных ВИЧ-инфекцией, а также количество больных с мультирезистентными формами туберкулеза [1-3]. Проблема диагностики туберкулеза у больных ВИЧ-инфекцией связана с особенностями течения, заболевание часто протекает в стертой форме без характерных признаков, а также в сочетании с поражением легких другой этиологии [4-8].

По данным патоморфологов [9], в секционном материале больных с сочетанной инфекцией ВИЧ и туберкулезом, как правило, присутствуют характерные деструктивные изменения (милиарная, субмилиарная, мелкоочаговая, реже крупноочаговая диссеминация, казеозно-некротические очаги), однако на настоящий момент в подобных работах изменения в органах и тканях представлены в основном на описательном уровне и носят субъективный характер (наличие или отсутствие того или иного морфологического признака). В связи с этим представляет научно-практический интерес выявление характерных изменений в изображениях (фотографиях) макро- и микропрепаратов органов и тканей у этой группы больных, которые можно было бы оценить объективно с помощью статистического автоматизированного анализа изображений.

В настоящее время автоматизированный анализ изображений достаточно активно используется в медицинской практике. При этом основная задача, решаемая с помощью компьютерной томографии (КТ), С выявление патологических изменений в органах и тканях. Обычно в процессе анализа изображения выделяется и идентифицируется структура ткани, что служит одним из дополнительных оснований при постановке диагноза. В настоящий момент данные КТ уступают гистологическому анализу, но в совокупности с данными гистологического исследования помогают при постановке окончательного диагноза.

Например, в работе О.В. Харьковой [10] было показано, что формализованный анализ изображений полипов толстой кишки позволяет провести дифференциальную диагностику наличия аденокарцином или полипов примерно в 50% случаев и, таким образом, уменьшить объем работы гистолога.

Возможны и другие направления в применении автоматизированного анализа изображений в медицине. Полученные формальные характеристики изображений можно использовать для оценки степени тяжести состояния и прогноза исхода. Например, было показано, что анализ цвета брюшины позволяет оценить степень тяжести поражения при перитоните [11].

Целью нашей работы явилась оценка величины различий ряда макро- и микропрепаратов для определения возможности применения формальных характеристик цветности изображения в диагностике степени поражения тканей легких и кишечника у пациентов с ВИЧ-инфекцией на стадии вторичных заболеваний.


Материал и методы



Проанализированы истории болезни 13 больных с летальным исходом с диагнозом "ВИЧ-инфекция" на стадии вторичных заболеваний (классификация В.И. Покровского и соавт., 2006) с преимущественным поражением органов дыхания, находившихся на стационарном лечении в ГБУЗ ИКБ № 2 ДЗМ в 2013-2016 гг.

Для анализа были взяты изображения макро- и микропрепаратов секционного материала тканей легкого и кишечника больных ВИЧ-инфекцией с преимущественным поражением органов дыхания. Общий объем макро- и микропрепаратов С 30 изображений (8 макро- и 22 микропрепарата). Статистический анализ данных проводился на кафедре медицинской информатики и статистики Первого МГМУ им. И.М. Сеченова с использованием программы Gradient, предложенной д.ф.-м.н. А.Н. Герасимовым, дистрибутив которой находится на сайте http://1mgmu.com/nau/spisokizo.html [12, 13]. Программа позволяет рассчитать распределение по цвету точек изображения, а также скорость изменения цвета точек при изменении их положения. При использовании этой программы из каждого изображения макро- или микропрепарата вырезалось два фрагмента размером 200х200 пикселей. Для формализации процесса один фрагмент вырезался из левого верхнего угла, второй - из центра. Далее для каждой точки с координатами (x, y), где x = 1,...200, y = 1,...200 в соответствии со стандартной моделью кодирования цвета RGB определялась интенсивность красного R (x, y), зеленого G(x, y) и синего B(x, y) цветов как три целых числа в пределах от 0 до 255, т. е. интенсивность каждого из трех базовых цветов кодируется одним байтом. Из них вычислялась также интенсивность белого цвета W (x, y) как среднее арифметическое из этих трех величин. Для наборов чисел R (x, y), G(x, y), B (x, y) и W (x, y) рассчитывались функции плотности распределения (т. е. доли точек с данной интенсивностью), а также стандартные статистические параметры: среднее арифметическое, среднеквадратичное отклонение, коэффициенты вариации, асимметрии и эксцесса, а также медиана и другие квартили.

Данные характеристики описывают цвет точек, имеющихся в изображении, однако если эти точки переставить, то эти характеристики не меняются, т. к. при их расчете координаты точек не учитываются. В связи с этим также была рассчитана функция средней скорости изменения цвета.

Для этого для красного цвета для каждой пары точек (x1, y1) и (x2, y2) рассчитываются величины расстояния между точками r = Ö(x1 – x2)2 + (y1 – y2)2 и разность интенсивности красного цвета D = ½R(x1, y1) – R(x2, y2)½ в точках (x1, y1) и (x2, y2). После этого расстояние между точками r округляется с точностью до 1, и из значений разностей с тем же r рассчитывается средняя величина DR(r). Аналогичные функции DG(r), DB(r) и DW(r) рассчитываются для зеленого, синего и белого цветов. Данные функции количественно показывают величину скорости изменения интенсивности цвета.

Для получения необходимого качества изображения фотографии макро- и микропрепаратов сохранялись в формате .png, поддерживающем трехбайтовую кодировку цвета без потери резкости изображения, как представлено на микрофотографии (2560х1920 точек) среза ткани легкого пациента с саркомой Капоши (рис. 1).

Рис. 1. Микрофотография препарата ткани легкого

Распределение точек по интенсивности цвета представлено на рис. 2.

Рис. 2. Распределение точек по интенсивности цвета

Данное распределение формально подтверждает, что средний цвет изображения скорее красный, яркость средняя и участков с высокой яркостью, близкой к предельной, на фотографии нет. Однако формализация распределения позволяет проводить численный анализ.

Для функций DR(r), DG(r), DB(r) и DW(r) данного фрагмента изображения получили графики, которые отражены на рисунке 3. Рисунок 3 демонстрирует отсутствие сильно контрастных объектов С средняя величина разности интенсивности цвета для точек на большом расстоянии составляет от 26 для красного до 44 для синего и зеленого при максимальном возможном значении 255. После значения r = 25 рост функций практически прекращается, что означает, что характерный размер контрастных объектов на изображении С около 25 точек.

Рис. 3. Графики функций DR(r), DG(r), DB(r) и DW(r) для данного фрагмента

Результаты исследования

На первом этапе анализа мы сравнили функции плотности распределений по яркости цвета для пар фрагментов одного изображения с парами фрагментов других изображений. В качестве меры различий функции плотности распределений была взята евклидова норма.

Когда N1(k), N2(k), k = 1, ..., 255 С число точек с интенсивностью цвета k для двух сравниваемых распределений по интенсивности цвета, тогда величина (N1,N2) = 255åk=1 N1(k)N2(k) обладает всеми свойствами скалярного произведения, порождающего евклидову норму ½½N1½½ = Ö(N1,N1), что дает возможность определить различие между двумя распределениями как r2(N1,N2) = .∑k=1  N 1 (k)N 2 (k)

Аналогично определяется величина различия и для функций D(r).

В результате величины различия при сравнении фрагментов в рамках одного изображения оказались значительно больше, чем при сравнении фрагментов всех других изображений (табл. 1).

Таблица 1. Величина различия r2 при сравнении фрагментов одного изображения и фрагментов других изображений

При определении степени различий между изображениями макро- и микропрепаратов возможны три варианта пар. Результаты, полученные при оценке различий, демонстрирует таблица 2. Анализ этой таблицы показал, что при сопоставлении образцов одного типа различий было меньше, чем при сопоставлении образцов других типов.

Таблица 2. Величина различия r2 при сравнении фрагментов изображений объектов одного типа и разных типов

Для таблиц 1 и 2 использовались данные 30 изображений с 2 фрагментами из каждого. С учетом того, что общее количество различий при попарном сопоставлении 60 образцов друг с другом составляет: 60х59 / 2 = 1770, полученные в таблицах различия статистически достоверны.

При дальнейших сравнениях пары фрагментов одного и того же изображения были исключены из сравнения. Среди микропрепаратов было 28 образцов ткани легких и 2 образца ткани кишечника. При сопоставлении этих образцов выявлены различия, отраженные в таблице 3.

Таблица 3. Величина различия r2 при сравнении фрагментов изображений микропрепаратов легких и кишечника

При сравнении изображений микропрепаратов ткани легких пациентов с туберкулезом и с нетипичными микобактериозами не выявлено различий величины r2, и при сравнении внутри группы больных с нетипичными микобактериозами также различий не выявлено. При сравнении суммы этих двух подгрупп с другими изображениями микропрепаратов легких было получено, что изображения в группе больных туберкулезом и нетипичными микобактериозами более гомогенны, чем другие изображения легких (табл. 4). При сравнении фрагментов изображений микропрепаратов ткани легких пациентов с бактериальной пневмонией различия в среднем меньше, чем при сравнении изображений препаратов пациентов с бактериальной пневмонией и другими вариантами поражений легких, а также при сравнении других вариантов небактериальной этиологии друг с другом (табл. 5).

Таблица 4. Величина различия r2 при сравнении фрагментов изображений микропрепаратов легких больных ВИЧ-инфекцией с туберкулезом, нетипичными микобактериозами и поражением легких другой этиологии

Таблица 5. Величина различия при сравнении фрагментов изображений микропрепаратов легких: бактериальная пневмония и другие варианты поражений

Для оценки прогностической способности различий в функциях распределений по интенсивности цвета и D(r) была рассчитана площадь под ROC-кривой (табл. 6).

Таблица 6. Величина площади под ROC-кривой

Величина площади под ROC-кривой приближенно соответствует доле исследованных нозологий. При величине площади под ROC-кривой, превышающей 50%, прогнозирование точнее (50% площадь говорит о нулевой диагностической ценности).

В настоящее время ROC-кривая все чаще используется для иллюстрации прогностической точности показателей и методик. Формально она определяется следующим образом: имеется некоторый числовой показатель f, например, средняя интенсивность красного цвета точек изображения, и этот показатель может быть использован для дифференциальной диагностики пневмоцистной пневмонии.

Для каждого возможного значения интенсивности I мы можем считать, что у больных с показателем f > I, вероятен диагноз Зпневмоцистная пневмонияИ, а у больных с показателем f < I диагноз пневмоцистной пневмонии отсутствует. То есть это прогностическая методика, для которой можно рассчитать чувствительность и спе­цифичность.

Если мы будем менять величину порогового значения I, то у нас будут меняться величины чувствительности и специфичности. Полученный набор пар Зчувствительность/специфичностьИ и будет задавать ROC-кривую с одной оговоркой: традиционно при построении ROC-кривой берут не специфичность по оси X, а берут величину «1-специфичность».

Если показатель, для которого строится ROC-кривая, и прогнозируемый диагноз никак не связаны друг с другом, то площадь под кривой равна 50%. Если же используемый показатель позволяет безошибочно проводить диагностику, то площадь под кривой равна 100%.

Средняя величина площади под ROC-кривой в таблице 6 составляет 58,6%, что не вполне совпадает с долей поставленных диагнозов. Доля вероятности нозологий будет выше, если:

априорная вероятность диагнозов выше 50%;

при диагностике используются многофакторные модели, тогда как таблица 6 соответствует однофакторной модели.

Даже если брать однофакторную модель по одному, но наиболее информативному показателю, площадь под ROC-кривой составит более 70%.

Заключение

Полученные данные свидетельствуют, что имеются различия в исследованных характеристиках изображений, которые позволяют использовать их в диагностике, а также искать статистически достоверные связи между изображениями, гистологическими изменениями и прогнозом течения заболевания.

Полученные оценки уровня связи позволят разработать автоматизированную методику, которая на предварительном этапе обработки изображений поможет распознать характерные изменения для каждой нозологии, тем самым уменьшая объем работы врача-гистолога.

Исследование проведено при поддержке «Проекта повышения конкурентоспособности ведущих российских университетов среди ведущих мировых научно-образовательных центров».

Литература
1. Васильева И.А., Белиловский Е.М., Борисов С.Е. и др. Туберкулез, сочетанный с ВИЧ-инфекцией, в странах мира и в Российской Федерации. Туберкулез и болезни легких. 2017;95(5):8–18. [Vasilieva I.A., Belilovsky E.M., Borisov S.E. et al. Tuberculosis combined with HIV infection in the countries of the world and in Russian Federation. Tuberculosis and lung diseases. 2017;95(5):8–18 (in Russ.)].
2. Васильева И.А., Белиловский Е.М., Борисов С.Е., Стерликов С.А. Глобальные отчеты Всемирной организации здравоохранения по туберкулезу: формирование и интерпретация. Туберкулез и болезни легких. 2017;95(5):7–16. [Vasilieva I.A., Belilovsky E.M., Borisov S.E., Sterlikov S.A. Global Reports of the World Health Organization on Tuberculosis: Formation and Interpretation. Tuberculosis and lung diseases. 2017;95(5):7–16 (in Russ.)].
3. Нечаева О.Б. Эпидемическая ситуация по туберкулезу среди лиц с ВИЧ-инфекцией в Российской Федерации. Туберкулез и болезни легких. 2017;95(3):13–19. [Nechaev O.B. Epidemic situation of tuberculosis among people with HIV infection in Russian Federation. Tuberculosis and l ung diseases. 2017;95(3):13–19 (in Russ.)].
4. Покровский В.В., Ладная Н.Н., Дубицкая Е.В., Буравцова Е.В. ВИЧ-инфекция. Информационный бюллетень. М.; 2002. [Pokrovsky V.V., Ladnaya N.N., Dubitskaya E.V., Buravtsova E.V. HIV infection. Newsletter. М.; 2002 (in Russ.)].
5. Вовк А.Д., Антонян С.Н., Поддубный А.Ф. Туберкулез легких у больных ВИЧ-инфекцией. Русский журнал ВИЧ/СПИД и родственные проблемы. 1997;1(1):139–140. [Vovk A.D., Antonyan S.N., Poddubniy A.F. Pulmonary tuberculosis in patients with HIV infection. Russian Journal of HIV/AIDS and Related Problems. 1997;1(1):139–140 (in Russ.)].
6. Рахманова А.Г., Яковлев А.А., Виноградова Е.Н. и др. Вторичные заболевания у больных ВИЧ-инфекцией и туберкулезом. Материалы VIII Российского съезда фтизиатров «Туберкулез в России год 2007». М.; 2007. [Rakhmanova A.G., Yakovlev A.A., Vinogradova E.N. et al. Secondary diseases in patients with HIV infection and tuberculosis. Proceedings of the VIII Russian Congress of Phthisiatricians “Tuberculosis in Russia Year 2007”. M.; 2007 (in Russ.)].
7. Фролова О.П. Особенности течения туберкулеза у ВИЧ-инфицированных и меры его профилактики: дис. … д-ра мед. наук. СПб.; 1998. [Frolova O.P. Features of tuberculosis in HIV-infected and measures for its prevention: Thesis. St. Petersburg; 1998 (in Russ.)].
8. Литвинова Н.Г., Кравченко А.В., Шахгильдян В.И. и др. Поражение нижних дыхательных путей у больных ВИЧ-инфекцией. Эпидемиол. и инфекц. болезни. 2004;4:24–27. [Litvinova N. G., Kravchenko A. V., Shakhgildyan V. I. et al. Lesion of the lower respiratory tract in patients with HIV infection. Epidemiol. and infect. diseases. 2004;4:24–27 (in Russ.)].
9. Пархоменко Ю.Г., Ерохин В.В., Зюзя Ю.Р., Мазус А.И. Морфологические аспекты ВИЧ-инфекции. М.: Литера; 2016. [Parkhomenko Yu.G., Erokhin V.V., Zyuzya Yu.R., Mazus A.I. Morphological aspects of HIV infection. M.: Litera; 2016 (in Russ.)].
10. Ярема И.В., Герасимов А.Н., Лебедева Н.Ф. и др. Автоматизированный анализ изображений полипов толстой кишки. Сеченовский вестник. 2015;4:12–16. [Yarema I.V., Gerasimov A.N., Lebedeva N.F. et al. Automated image analysis of colon polyps. Sechenovsky messenger. 2015;4:12–16 (in Russ.)].
11. Багдасаров В.В., Багдасарова Е.А., Герасимов А.Н. и др. Возможности прогнозирования исхода острой интестинальной ишемии в рамках многофакторного регрессионного анализа. Хирургическая практика. 2015;3:39–46. [Bagdasarov V.V., Bagdasarova E.A., Gerasimov A.N. et al. Opportunities to predict the outcome of acute intestinal ischemia as part of multivariate regression analysis. Surgical practice. 2015;3:39–46 (in Russ.)].
12. Атаян А.А. Оптимизация лечебно-диагностической тактики у больных с острой интестинальной ишемией: дис. … канд. мед. наук. М.; 2013. [Atayan A.A. Optimization of therapeutic and diagnostic tactics in patients with acute intestinal ischemia. Thesis. M.; 2013 (in Russ.)].
13. Харькова О.М. Возможности узкоспектральной эндоскопии у хирургических больных с полипами толстой кишки: дис. … канд. мед. наук. М.; 2017. [Kharkova O.M. Possibilities of narrow-spectrum endoscopy in surgical patients with colon polyps. Thesis. M.; 2017 (in Russ.)].

Лицензия Creative Commons
Контент доступен под лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Только для зарегистрированных пользователей

зарегистрироваться

Поделитесь статьей в социальных сетях

Порекомендуйте статью вашим коллегам

Предыдущая статья
Следующая статья

Авторизируйтесь или зарегистрируйтесь на сайте для того чтобы оставить комментарий.

зарегистрироваться авторизоваться
Наши партнеры
Boehringer
Jonson&Jonson
Verteks
Valeant
Teva
Takeda
Soteks
Shtada
Servier
Sanofi
Sandoz
Pharmstandart
Pfizer
 OTC Pharm
Lilly
KRKA
Ipsen
Gerofarm
Egis
Dr. Reddis
Зарегистрируйтесь сейчас и получите доступ к полезным сервисам:
  • Загрузка полнотекстовых версий журналов (PDF)
  • Актуальные новости медицины
  • Список избранных статей по Вашей специальности
  • Анонсы конференций и многое другое

С нами уже 50 000 врачей из различных областей.
Присоединяйтесь!
Если Вы врач, ответьте на вопрос:
Дисфагия это:
Нажимая зарегистрироваться я даю согласие на обработку моих персональных данных
Если Вы уже зарегистрированы на сайте, введите свои данные:
Войти
Забыли пароль?
Забыли пароль?