28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
28
лет
предоставляем актуальную медицинскую информацию от ведущих специалистов, помогая врачам в ежедневной работе
Факторы риска развития COVID-19: иммунологические аспекты
string(5) "75658"
1
ФГБУ РосНИИГТ ФМБА России, Санкт-Петербург, Россия

Исследования последних лет, посвященные особенностям течения новой коронавирусной инфекции (COVID-19) у пациентов различных групп, свидетельствуют о значимой роли состояния иммунитета в развитии заболевания. Определены факторы риска тяжелого течения заболевания, включая пожилой возраст, ожирение, иммунодефицитные состояния. Ведутся исследования по выявлению генетической предрасположенности к инфицированию коронавирусом SARS-CoV-2 и плохому прогнозу при COVID-19. В представленном обзоре рассматриваются иммунологические аспекты патологических состояний, связанных с неблагоприятным прогнозом течения COVID-19. В ответ на инфицирование SARS-CoV-2 развивается комплексный иммунный ответ, включающий как врожденные иммунные механизмы, так и адаптивный системный ответ. Ключевой механизм полиорганного поражения — гипериммунная реакция с развитием системного воспалительного ответа, так называемый «цитокиновый шторм», а особенности реакции иммунной системы во многом определяют тяжесть течения заболевания. В связи с этим большой интерес представляют особенности иммунного ответа у пациентов групп риска, включая исследования иммунологических аспектов более тяжелого течения заболевания в зависимости от возраста, наличия ожирения, сахарного диабета и других патологических состояний, а также различных генетических факторов, что и является предметом активного изучения в настоящее время.

Ключевые слова: система иммунитета, COVID-19, SARS-CoV-2, факторы риска, ожирение, онкологические заболевания, генетическая предрасположенность, иммунный ответ.


T.V. Glazanova, E.R. Shilova, I.E. Pavlova

Russian Research Institute of Hematology and Transfusiology of the Federal Medical Biological Agency of Russia, St. Petersburg, Russian Federation


Recent studies devoted to the patterns of the COVID-19 course in patients of various groups indicate a significant role of the immunity state in the disease development. Risk groups of severe disease course, including senile age, obesity and immunodeficiency conditions, have been identified. Research is underway to identify the genetic predisposition to SARS-CoV-2 infection and determine the poor prognosis in COVID-19. The presented article examines the immunological aspects of pathological conditions associated with an unfavorable prognosis of COVID-19. A complex immune response (including both innate immune mechanisms and an adaptive systemic response) develops in response to SARS-CoV-2 infection. The key mechanism of multisystem organ failure is a hyperimmune reaction with the development of a systemic inflammatory response, the so-called "cytokine storm", and the characteristics of the immune response largely determine the disease severity. In this regard, the immune response characteristics in patients at risk are of particular interest, including studies concerning the immunological aspects of a more severe disease course depending on age, the history of obesity, diabetes mellitus and other pathological conditions, as well as various genetic factors, which is the subject of active study at present.

Keywords: immune system, COVID-19, SARS-CoV-2, risk factors, obesity, oncological diseases, genetic predisposition, immune response.

For citation: Glazanova T.V., Shilova E.R., Pavlova I.E. Risk factors of COVID-19: immunological aspects. Russian Medical Inquiry. 2023;7(11):751–758 (in Russ.). DOI: 10.32364/2587-6821-2023-7-11-5.


Для цитирования: Глазанова Т.В., Шилова Е.Р., Павлова И.Е. Факторы риска развития COVID-19: иммунологические аспекты. РМЖ. Медицинское обозрение. 2023;7(11):751-758. DOI: 10.32364/2587-6821-2023-7-11-5.

Введение

Новая коронавирусная инфекция (COVID-19) — острое респираторное заболевание, вызываемое РНК-геномным коронавирусом SARS-CoV-2. Повышенное внимание ученых к этому заболеванию обусловлено глобальностью и тяжестью последствий инфекции. Клинический спектр проявлений COVID-19 достаточно широк: от бессимптомного течения до состояний, требующих госпитализации в отделение интенсивной терапии.

За время пандемии COVID-19 проведено множество исследований, позволивших определить патогенетические особенности течения заболевания, выделить клинические группы риска тяжелого течения и неблагоприятных исходов. Выяснено, что, как и при других вирусных инфекциях, иммунный контроль над SARS-CoV-2 достигается за счет согласованного взаимодействия гуморального и клеточного иммунитета1 [1].

Трудно переоценить значение состояния иммунной системы в отношении риска заражения COVID-19 и его течения, а также повторного инфицирования. Наиболее очевидный пример — закономерно более тяжелое течение и худший прогноз COVID-19 у пациентов с онкологическими заболеваниями, для которых характерна иммуносупрессия, связанная с самим заболеванием и проводимым лечением. В других группах риска взаимосвязь состояния отдельных звеньев иммунной системы и течения заболевания не так очевидна, хотя существуют данные о разбалансировке врожденного и адаптивного иммунитета у больных тяжелыми формами COVID-19 [2].

Механизмы и этапы иммунного ответа

Комплексный иммунный ответ на инфицирование SARS-CoV-2 включает в себя врожденные иммунные механизмы, действующие уже на уровне слизистой оболочки верхних дыхательных путей, и адаптивный системный ответ [3]. Связывание шиповидного белка SARS-CoV-2 с рецепторами ангиотензинпревращающего фермента 2 (АПФ 2), имеющимися в большинстве тканей организма человека, инициирует развитие разносторонних реакций со стороны иммунной системы, приводящих при тяжелом течении COVID-19 к полиорганным поражениям. Ключевой механизм таких поражений — гипериммунная реакция с образованием большого количества биологически активных веществ и развитием системного воспалительного ответа, так называемого «цитокинового шторма», сопровождающегося эндотелиальными васкулопатиями, дисрегуляцией процессов свертывания крови, развитием острого респираторного дистресс-синдрома. В связи с этим тяжесть течения COVID-19 обусловлена, вероятно, не столько влиянием самого вируса, сколько особенностями реакции иммунной системы [4–6]. Хотя до настоящего времени степень участия гуморального и клеточного (прежде всего Т-клеточного звена) иммунитета в механизмах иммунной защиты и невосприимчивости к инфицированию вирусом, а также особенности индивидуального иммунного ответа в полной мере не ясны, основные этапы взаимодействия компонентов иммунной системы и вируса изучены достаточно глубоко.

Эффективность раннего противовирусного иммунного ответа может быть определяющим фактором исхода заболевания. Слизистая оболочка носа на первых этапах инфицирования играет значительную роль в запуске адаптивного системного ответа, и назофарингеальная лимфоидная ткань ответственна за образование зрелых Т- и В-клеток для долгосрочной иммунной защиты. При попадании в организм SARS-CoV-2 его шиповидный белок взаимодействует с Толл-подобными рецепторами (TLR) эпителиальных клеток бронхов, альвеол, кишечника, клеток сосудистого эндотелия и с рецепторами АПФ 2, что является основным условием инфицирования. На секреторных эпителиальных клетках носа отмечается высокий уровень экспрессии рецепторов AПФ 2 — основных рецепторов для связывания с SARS-CoV-2. Кроме того, существуют специализированные клетки эпителия носа, а также дендритные клетки и макрофаги, которые захватывают и представляют соответствующий антиген для стимуляции созревания лимфоцитов. Миграция активированных моноцитов со слизистой оболочки носа к легочным лимфатическим узлам может подготовить иммунную систему нижних дыхательных путей к воздействию вируса [3]. Кроме того, состояние и реакции назального эпителия, продуцирующего, в частности, интерфероны (ИФН), служит важным компонентом противовирусной защиты.

Как и при большинстве вирусных инфекций, ответ В-клеток на инфицирование SARS-CoV-2, контролируемый вирус-специфическими популяциями Т-фолликулярных хелперных клеток (Tfh), приводит к клональной пролиферации В-клеток и выработке специфических нейтрализующих антител к детерминантам SARS-CoV-2. Более высокие уровни циркулирующих Tfh связаны с более легким течением COVID-19 и имеют решающее значение для стимуляции продукции В-клеток [7]. Для формирования противовирусного иммунитета В-клеточный ответ, безусловно, важен, однако данные о корреляции В-клеточного ответа с тяжестью заболевания противоречивы, а в процессах противовирусной защиты важную роль играют не только антитела, но и факторы клеточного иммунитета [8]. Ответ В-клеток имеет решающее значение для защиты от повторного заражения. Показано, что содержание В-клеток памяти, направленных против шиповидного белка SARS-CoV-2, большинство из которых представляют собой IgG-продуцирующие клетки, увеличивается в интервале от 1 до 8 мес. после инфицирования [9]. При тяжелом же течении CОVID-19 необычная конверсия В-лимфоцитов в макрофагоподобные клетки приводит к неспособности гуморального и клеточного звеньев иммунной системы своевременно реагировать на нейтрализацию вируса.

В исследованиях показано, что основную ось адаптивного иммунного ответа в отношении SARS-CoV-2 формируют CD4+ Т-клетки, способные дифференцироваться в несколько подтипов, что позволяет CD4+ Т-клеткам выполнять различные функции в иммунном ответе на инфицирование. Известна связь истощения CD4+ Т-клеток с задержкой элиминации вируса из организма при снижении выработки цитокинов, нейтрализующих антител и рекрутировании лимфоцитов в легочную ткань [10]. Эффективность ответа на начавшийся инфекционный процесс во многом зависит от Т-лимфоцитов, поскольку активированные Т-клетки-киллеры в ответ на проникновение SARS-CoV-2 способны предотвращать дальнейшее распространение вируса из верхних дыхательных путей, что определяет в дальнейшем тяжесть течения и скорость передачи инфекции. Имеются данные о том, что функциональное истощение цитотоксических лимфоцитов коррелирует с прогрессированием заболевания, и, напротив, повышенные уровни CD8+ Т-клеток в периферической крови коррелируют со снижением тяжести течения заболевания [7, 11]. Функция данных клеток заключается в усилении цитотоксичности за счет экспрессии таких молекул, как ИФН-γ, гранзим B, перфорин и CD107a. Имеются свидетельства существования SARS-CoV-2-специфических циркулирующих CD8+ эффекторных T-клеток, проявляющих иммунологическую память и перекрестную реактивность [7].

Не вызывает сомнений и участие в патогенезе COVID-19 системы комплемента, хотя ее роль и механизмы активации путей комплемента не в полной мере изучены [5, 12]. Показано, что при активации зависимых от интерлейкина (ИЛ) 6 воспалительных иммунных реакций система комплемента влияет на гуморальный иммунитет, восприимчивость к заболеванию и клинический исход, связанные с инфекцией SARS-CoV-2. При этом высокие уровни маркеров воспаления коррелировали с патологически низкими уровнями компонентов комплемента С3 и С4. По-видимому, уровни компонентов комплемента снижаются вследствие чрезмерной активации каскада комплемента с последующим развитием легочного поражения [13]. Важным аспектом активации белка С3 является его способность усугублять протромботические и провоспалительные состояния, приводящие в конечном итоге к поражению органов-мишеней при тяжелом течении COVID-19.

В разгар заболевания, при гиперактивации иммунного ответа и критическом течении COVID-19, развивается патологическая активация врожденного и приобретенного (Th1- и Th17-типы) иммунитета, а также дисрегуляция синтеза провоспалительных и иммунорегуляторных цитокинов и хемокинов, включая ИЛ (ИЛ-1, -2, -6, -7, -8, -9, -10, -12, -17, -18), гранулоцитарный колониестимулирующий фактор (Г-КСФ), гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ), фактор некроза опухоли α (ФНО-α), ИФН (ИФН-α и ИФН-β), ИФН-γ-индуцируемый белок 10, моноцитарный хемоаттрактантный белок 1 (МХБ-1), макрофагальный воспалительный белок 1α (МВБ-1α)1 [14]. Концентрация С-реактивного белка (СРБ), степень повышения которой служит одним из основных критериев степени тяжести переносимой инфекции, увеличивается у большинства пациентов одновременно с увеличением содержания ИЛ-6 и скорости оседания эритроцитов. Концентрации ИЛ-6, ИЛ-10 и ФНО-α увеличиваются во время болезни, достигая максимума у пациентов с тяжелым течением заболевания, и снижаются при выздоровлении. В настоящее время для контроля состояния пациента и оценки эффективности лечения COVID-19, наряду с определением уровня D-димера, ферритина, фибриногена, CРБ и лактатдегидрогеназы, рекомендовано определение содержания ИЛ-6. Тяжелое течение COVID-19 также ассоциировано со снижением количества CD4+ и CD8+ T-клеток, при этом уровень ИЛ-6, ИЛ-10 и ФНО-α обратно пропорционален количеству CD4+ и CD8+ Т-клеток1 [11].

Гиперактивация иммунного ответа может приводить к повреждению легочной паренхимы, прилегающей бронхиальной и альвеолярной лимфоидной ткани, но может приобретать и генерализованный характер1. SARS-CoV-2-ассоциированая эндотелиальная дисфункция — основа характерной для COVID-19 тромботической микроангиопатии, которая является следствием как специфического вирусного, так и вызванного «цитокиновым штормом» повреждения эндотелия. В дальнейшем нельзя исключить и аутоиммунный механизм повреждения.

Безусловно, любое нарушение иммунных реакций на каждом из этапов будет способствовать более тяжелому и затяжному течению инфекции с большим числом осложнений. Причем изменения иммунной реактивности могут быть как врожденными, так и приобретенными.

Важная задача с начала пандемии — определение факторов риска развития тяжелого течения СOVID-19, критических состояний и смерти для определения тактики лечения и вакцинации. К группе высокого риска при СOVID-19 относят в первую очередь лиц пожилого возраста (≥60 лет), пациентов с ожирением, иммуносупрессией, сердечно-сосудистыми заболеваниями, хроническими заболеваниями легких и сахарным диабетом. Для всех этих состояний в той или иной степени характерны нарушения иммунной регуляции, изучение которых позволяет глубже понять патогенез заболевания, индивидуализировать терапию и применить наиболее эффективные методы лечения и профилактики, как самого заболевания, так и его осложнений.

Для объяснения невосприимчивости отдельных лиц к SARS-CoV-2, следует, по-видимому, учитывать существование иммунной памяти к коронавирусам, предшествовавшим SARS-CoV-2, и возможность перекрестного реагирования специфичных к шиповидному белку CD4+ Т-клеток с различными вариантами вируса. Поскольку Т-клетки являются инструментом «долговременной памяти», иммунная система может сохранять способность распознавать вирусы с похожими поверхностными белками после контакта с другими коронавирусами в прошлом. Имеются сведения о том, что CD4+ Т-клетки, реактивные в отношении SARS-CoV-2, могут определяться у 20–50% лиц, не подвергавшихся воздействию вируса [3, 5].

Возрастные аспекты иммунологической реактивности

Пожилой возраст — признанный фактор риска не только COVID-19, но и других вирусных инфекций, включая MERS-CoV и SARS [15, 16]. Многочисленные исследования показали, что средний возраст пациентов с тяжелым течением COVID-19 выше, чем возраст пациентов, у которых COVID-19 протекает легко [17]. По данным одного из исследований [16], объединенное отношение шансов (ОШ) в отношении повышенного риска смертности от COVID-19 в пожилом возрасте составило 2,61 (95% ДИ 1,75–3,47) против 1,31 (95% ДИ 1,11–1,51) у более молодых лиц. Вероятной причиной этого могут быть не только хронические заболевания, но и сниженный уровень иммунитета [18]. Предполагается, что организм пожилых людей и пациентов с коморбидными заболеваниями не может вовремя обеспечить эффективный иммунный ответ или нуждается в длительной его индукции для развития эффективного специфического ответа. Известно, что по мере старения эффективность иммунной системы снижается, и это может влиять на течение и исходы вирусной инфекции. У пожилых пациентов возможны лимфопения, снижение содержания регуляторной популяции Т-клеток (Тreg), уменьшение функциональной активности иммунокомпетентных клеток [19]. Имеются данные о том, что старение влияет на CD4+ Т-клетки, CD8+ Т-клетки, функцию В-клеток, а снижение клонального разнообразия Т- и В-клеток приводит к нарушению иммунного ответа на вирусные инфекции. Избыточная продукция цитокинов Th2 лимфоцитами может привести к длительному провоспалительному иммунному ответу [20, 21]. Большему риску смерти у пожилых пациентов с COVID-19 может способствовать и нарушение врожденной и адаптивной иммунной передачи сигналов от слизистой оболочки носа [3].

Особенности иммунного ответа при ожирении

Риск тяжелого течения COVID-19 при ожирении обусловлен не только повышенным риском развития гиповентиляционной пневмонии, легочной гипертезии и сердечно-сосудистой патологии, но и процессами, связанными с избытком висцеральной жировой ткани, которые сопровождаются иммунологической дисрегуляцией и приводят к большей склонности подобных пациентов к развитию инфекционных заболеваний. За счет накопления жиров увеличивается размер адипоцитов и объем жировой ткани, аккумулируются макрофаги, а также нарушается выработка адипокинов, провоспалительных цитокинов и свободных жирных кислот [22–24]. Иммунный ответа у лиц с избыточной массой тела характеризуется более высокими концентрациями циркулирующих ИЛ-6 и СРБ, нарушением регуляции экспрессии тканевых лейкоцитов, замещением альтернативно активированных макрофагов (М2) субпопуляцией воспалительных макрофагов [25]. Имеются данные о том, что ожирение может являться независимым фактором риска развития иммуноопосредованных заболеваний [26], что вызывает определенную настороженность в отношении риска развития аутоиммунных и системных осложнений после перенесенной COVID-19.

Согласно современным представлениям, жировая ткань — это не только энергетическое депо, но и эндокринный орган, функциональная активность которого тесно связана с состоянием иммунной системы. Изменение архитектуры лимфоидной ткани, сопровождающее избыточное отложение жира, отрицательно влияет на ее функционирование, способствуя изменению распределения популяций иммунных клеток, нарушению активности Т-клеток. В результате негативные эффекты хронического воспаления у пациентов с ожирением потенцируют множественные метаболические нарушения и дополняются нарушениями клеточного иммунитета и снижением иммунной защиты [27–29]. Наряду с этим считают, что увеличение количества Т-лимфоцитов памяти в жировой ткани может активировать аберрантный иммунный ответ с более значительным повреждением ткани при заражении SARS-CoV-2, что ухудшает прогноз [24].

В жировой ткани макрофаги секретируют провоспалительные цитокины (резистин, ФНО-α, ИЛ-6, ИЛ-18, ИЛ-1β, МХБ-1 и ангиотензин II), концентрация которых увеличивается при ожирении. Так, показано, что уровень ФНО-α резко повышен при ожирении, а при уменьшении массы тела его концентрация в крови снижается. Концентрация ИЛ-6 в крови также прямо пропорциональна индексу массы тела и может при ожирении в 10 раз превышать нормальные показатели. Более того, с показателями ФНО-α и ИЛ-6 коррелирует уровень СРБ [30], степень повышения которого служит одним из основных критериев степени тяжести COVID-191. Цитокины способствуют развитию местного и системного воспалительного ответа. Под влиянием ФНО-α, ИЛ-6 и ИЛ-1β происходит избыточное фосфорилирование сигнального адаптерного белка (IRS-1) по остаткам серина, снижение содержания IRS-1 и переносчика глюкозы 4-го типа (GLUT-4), наблюдается усиление экспрессии и активации супрессора передачи сигналов цитокинов 3 (SOCS-3) [31, 32]. Один из основных участников «цитокинового шторма» — ИЛ-6 поддерживает активацию ряда цитокинов на протяжении многих дней после первоначального иммунного ответа и, как показали многоцентровые исследования, является независимым предиктором летальных исходов при COVID-19 [24]. Жировая ткань человека как главный источник ИЛ-6 и его рецептора (ИЛ-6R) обладает большим потенциалом для активации ИЛ-6 и каскадной передачи сигналов при вирусной инфекции и может способствовать отсроченному «цитокиновому шторму» с повреждением тканей у больных COVID-19 [24].

Продуцируют цитокины не только лимфоциты и макрофаги, но и гипертрофированные адипоциты, участвуя в цепи воспалительных процессов и активации комплемента. Один из основных адипоцитокинов — адипогормон лептин, который способствует активации Т-хелперов, обладает прокоагулянтными и антифибринолитическими свойствами, поддерживает процесс тромбообразования и атерогенеза, что приводит к прогрессирующему развитию эндотелиальной дисфункции, нарушению макро- и микроциркуляции и способствует более тяжелому течению инфекции [30].

Ожирение приводит также к увеличению отложения липидов в костном мозге и тимусе, что нарушает распределение популяции лейкоцитов, влияет на их развитие, миграцию и разнообразие лейкоцитов у пациентов с COVID-19 [29].

Особенности иммунного ответа у пациентов с онкологическими заболеваниями

Повышенную вероятность тяжелого течения заболевания и высокой смертности отмечают у пациентов с онкологическими заболеваниями, особенно опухолевыми заболеваниями кроветворной и лимфоидной тканей, такими как хронический лимфолейкоз, лимфома, множественная миелома, острый лейкоз. К факторам, ослабляющим иммунную защиту у онкологических больных, относят особенности самих онкологических заболеваний и побочные эффекты проводимого лечения, включая нейтропению и лимфопению, а также прямое иммуносупрессивное действие ряда применяемых лекарств. В данной группе пациентов инфекция COVID-19 приводит как к повышенной смертности, так и к длительной персистенции вируса и рецидивам заболевания. Как фактор риска тяжести заболевания рассматривают химиотерапевтическое лечение онкологического заболевания, особенно направленное на элиминацию В-клеток и нарушение Т-клеточного иммунитета с изменением количества и функций CD8+ T-лимфоцитов. В ослабление факторов местного иммунитета вносят свой вклад и мукозиты, нередко встречающиеся у пациентов данной группы [33–35].

Генетические аспекты иммунного ответа

Особое внимание в последнее время уделяют генетической предрасположенности к развитию тяжелого течения инфекции и «цитокинового шторма». Индивидуальные генетические вариации, оказывающие влияние на функционирование иммунной системы, могут помочь объяснить различный ответ на инфекцию SARS-CoV-2 в популяции, выявить группы повышенного риска и определить носителей локусов генов главного комплекса гистосовместимости (HLA, Human Leukocyte Antigens), ассоциированных с формированием защитного иммунитета при этом заболевании.

Гены системы HLA играют важную роль в нормальном функционировании иммунной системы, поскольку молекулы HLA обеспечивают презентацию различных возбудителей инфекционных заболеваний. Аллельные варианты генов HLA могут определять генетическую предрасположенность как к самим инфекционным заболеваниям, так и к тяжелому их течению. Так, при сравнении результатов обследования лиц, перенесших COVID-19, и контрольной группы здоровых лиц, жителей Северо-Западного региона РФ, получены данные о том, что группы аллелей А*02 и А*26 снижают вероятность заболевания, в то время как А*29, по-видимому, является фактором, предрасполагающим к развитию заболевания [36].

В ряде работ, посвященных определению влияния вариаций генов HLA на течение COVID-19, обсуждается вероятность того, что гиперактивация иммунитета, приводящая к развитию «цитокинового шторма» или «цитокинового каскада», определяется аллелями генов системы HLA [37]. Результаты работы A. Nguyen et al. [38] по определению аффинности 145 генотипов HLA-A, HLA-B и HLA-C ко всем пептидам SARS-CoV-2 свидетельствуют о низкой прогнозируемой связывающей способности с пептидами SARS-CoV-2 аллелей HLA-B*46:01 HLA-A*25:01 и HLA-C*01:02. Соответственно, к группе особой уязвимости и предрасположенности к более тяжелому течению заболевания можно отнести носителей данных аллелей. К аллелям с высокой прогнозируемой связывающей способностью, что предполагает способность обеспечить перекрестный защитный Т-клеточный иммунитет, относят, по данным того же исследования, HLA-B*15:03, HLA-A*02:02 и HLA-C*12:03 [38].

Существует мнение о связи между группой крови, частотой заражения и летальными исходами в результате COVID-19. Результаты различных исследований оказались противоречивы, однако обнаружены определенные закономерности, имеющие научное объяснение. Показано, что группа крови А может быть одним из факторов риска COVID-19, а риск заражения лиц с группой крови 0 был наименьшим [39, 40]. Этот феномен объясняется тем, что вирус может связываться не только с рецепторами АПФ 2, но и с гликопротеинами на поверхности эритроцитов, определяющими группу крови. Наименьшее число этих антигенов экспрессируется на поверхности эритроцитов носителей группы крови 0, что приводит к меньшему молекулярному контакту вирусных частиц с клетками хозяина и снижает риск заражения. Следует отметить, что SARS-COV-2 вообще свойственна антигенная мимикрия относительно многих тканей человека и возможности взаимосвязи между шипом SARS-CoV-2, ядерными белками и аутоиммунными белками-мишенями, что может приводить к аутоиммунной реакции против собственных тканей человека и обширному повреждению тканей и органов [41].

Ведутся исследования по выявлению генетически обусловленных изменений в синтезе цитокинов и ответе на повышенный их уровень при COVID-19. При том, что коронавирусам свойственно подавлять ответ ИФН I типа, вмешиваясь в сигнальные пути паттерн-распознающих рецепторов и рецепторов ИФН [14], имеются данные об особенностях ответа ИФН-α при врожденном нарушении интерферонового пути, увеличении числа мутаций с потерей функции в локусах, участвующих в продукции ИФН I типа у пациентов с COVID-19. В частности, обнаружен полиморфизм rs12252C/C в гене IFITM3, ассоциированный со сниженной активацией интерферонового пути и более тяжелым течением COVID-19 [42]. Определенную роль в развитии тяжелого COVID-19 могут играть и нейтрализующие аутоантитела к ИФН I типа, которые выявляются примерно у 10% пациентов с тяжелым клиническим течением заболевания [43].

Гендерные различия иммунного ответа

Имеются данные о гендерных различиях рисков COVID-19. Большинство публикаций свидетельствует о более высоком риске смертности у мужчин, что связывают с гендерными различиями адаптивного и врожденного иммунитета, более низким числом CD8+ и CD4+ T-клеток у мужчин и сниженной, по сравнению с женщинами, продукцией В-клеток [44–46]. Следует также учитывать, что некоторые важные иммунорегуляторные гены расположены на Х-хромосоме. Кроме того, у женщин показана более высокая экспрессия TLR-7, входящего в группу TLR, обеспечивающих функционирование врожденного иммунитета [47]. В исследовании показано, что у пациентов мужского пола тяжелое течение COVID-19 было ассоциировано с низкой экспрессией гена Х-хромосомы, кодирующего TLR-7. В функции этих рецепторов входит распознавание структурных компонентов инфекционных агентов и запуск реакций клеточного иммунитета [48]. На Х-хромосоме у людей кодируется также рецептор АПФ 2, и крупные популяционные исследования показали, что полиморфные варианты рецептора АПФ 2 могут способствовать восприимчивости к заболеванию, предположительно путем изменения свойства поглощения SARS-CoV-2 [3]. Клинические данные, свидетельствующие о том, что у пациентов мужского пола исходы COVID-19 хуже, чем у женщин, позволяют предположить, что этот факт также может играть роль в различии исходов заболевания в зависимости от пола.

Обсуждается защитная роль половых гормонов при более благоприятном течении COVID-19 у женщин. Половые гормоны участвуют в регуляции провоспалительных цитокинов, особенно эстрадиол (E2), концентрация которого отрицательно коррелировала с содержанием ИЛ-2R, ИЛ-6, ИЛ-8 и ФНО-α [46]. С особенностями гормонального фона связывают и более высокую продукцию ИФН-α плазмоцитоидными дендритными клетками у взрослых женщин, чем у взрослых мужчин [46].

Иммунологические аспекты вакцинации

Отдельной проблемой являются заболевания и состояния, при которых снижен иммунитет и не формируется достаточный иммунный ответ после вакцинации против SARS-CoV-2. К такой категории относятся врожденные и приобретенные иммуносупрессивные состояния, в том числе онкологические заболевания. Результаты ряда исследований показали, что у пациентов с гематологическими злокачественными новообразованиями, особенно лимфоидной природы, при моноклональных гаммапатиях, ответ антител на вакцины против SARS-CoV-2 ниже, чем в целом в популяции, что делает их наиболее уязвимыми для COVID-19, предрасполагает к более тяжелому его течению и более частым случаям реинфекции. У большей части пациентов с лимфоидными новообразованиями снижено количество CD19+-клеток, и имеющиеся данные подтверждают, что у большинства пациентов с низким количеством лимфоцитов CD19+, в том числе вызванным лечением моноклональными антителами к CD20, наблюдается тяжелое течение COVID-19 и не достигается серопозитивный ответ после вакцинации против SARS-CoV-2 [49]. При исследовании возможностей прогнозирования эффективности вакцины против SARS-CoV-2 при онкогематологических заболеваниях группой испанских авторов обнаружено также, что относительное содержание нейтрофилов, классических моноцитов, CD4+ и CD8+ эффекторных клеток памяти с низкой экспрессией CD127 (CD127low), а также наивных CD21+ и IgM+D+В-клеток памяти было независимо связано с иммуногенностью [50]. По результатам крупного исследования американских авторов, опубликованного в 2021 г., у пациентов с гематологическими злокачественными новообразованиями (лейкемия, лимфома и множественная миелома) после первоначальной вакцинации были снижены не только титры антител, но и их вирус-нейтрализующая способность, которая составила 26,3% через 1 мес. и 43,6% через 3 мес., в то время как у лиц контрольной группы — 93,2 и 100% соответственно. Лечение ингибиторами тирозинкиназы Брутона, венетоклаксом, ингибиторами фосфоинозитид-3-киназы, ингибиторами антигена CD38 и антителами анти-CD19/CD20 существенно замедляло ответ на вакцину [51].

Осложнения COVID-19

Риски неблагоприятных исходов COVID-19 могут быть связаны также с различными осложнениями заболевания. Большинство осложнений после перенесенного COVID-19 связывают с длительной персистенцией вируса в органах и тканях, а также с развитием аутоиммунных нарушений. Появляется все больше доказательств того, что COVID-19 приводит к дисрегуляции иммунной системы, способствующей развитию аутоиммунных процессов [52]. В настоящее время еще недостаточно данных для окончательных выводов о том, каких пациентов следует относить к группе риска по развитию аутоиммунных осложнений, спровоцированных инфекцией SARS-CoV-2. Исследования в этом направлении продолжаются. Тем не менее, учитывая установленные механизмы развития аутоиммунных заболеваний, можно предположить, что наиболее подвержены развитию таких осложнений лица с наследственной предрасположенностью. Известно, что такая предрасположенность ассоциирована в первую очередь с определенным HLA-фенотипом, включающим различные аллели, в частности: HLA-A24, -B8, -B18, HLA-DRB1*04:01, -DRB1*04:04, -DRB1*01:01, -DRB1*10:01, -DRB1*04:05, -DRB1*14:02.

Заключение

Таким образом, накопленные к настоящему времени данные позволяют уточнить иммунную природу отдельных факторов риска развития и тяжелого течения COVID-19. Выявление групп пациентов с генетическими нарушениями, обусловливающими изменение иммунологической толерантности и гиперактивный ответ на инфекцию SARS-CoV-2, будет способствовать оптимизации алгоритма профилактики заболевания и лечения таких больных. Результаты исследований, свидетельствующие о том, что для пациентов с нарушенным адаптивным иммунитетом высок риск персистирующей инфекции COVID-19, заставляют разрабатывать дополнительные терапевтические стратегии для обеспечения элиминации вируса. Для прогнозирования эффективности вакцинации против SARS-CoV-2 у отдельных групп лиц предлагаются новые иммунные биомаркеры, дополняющие факторы, которые помогут уточнить индивидуальные сроки ревакцинации и показания к применению бустерных вакцин. Необходимы изучение отдаленных последствий перенесенной инфекции и оценка рисков иммуноопосредованных осложнений.

Учитывая важную, зачастую определяющую, роль иммунной системы в развитии таких заболеваний, как COVID-19, возможно в перспективе будет поставлена задача определения исходного индивидуального «иммунологического профиля» для оценки индивидуальных рисков. Результатом такого обследования может стать проведение адекватной профилактики на ранних этапах, что позволит ослабить напряженность эпидемиологической ситуации.


1Временные методические рекомендации Минздрава России. Профилактика, диагностика и лечение новой коронавирусной инфекции. Версия 16 (от 18.08.2022). (Электронный ресурс.) URL: https:// edu.rosminzdrav.ru/news/vremennye-metodicheskie-rekomendacii-profilaktika-d (дата обращения: 24.10.2022).


Сведения об авторах:

Глазанова Татьяна Валентиновна — д.м.н., заведующая научно-исследовательской лабораторией иммунологии ФГБУ РосНИИГТ ФМБА России; 191024, Россия, г. Санкт-Петербург, ул. 2-я Советская, д. 16; ORCID iD 0000-0002-1022-8127.

Шилова Елена Романовна — к.м.н., ведущий научный сотрудник научно-исследовательской лаборатории иммунологии ФГБУ РосНИИГТ ФМБА России; 191024, Россия, г. Санкт-Петербург, ул. 2-я Советская, д. 16; ORCID iD 0000-0002-9253-6181.

Павлова Ирина Евгеньевна — д.м.н., главный научный сотрудник научно-исследовательской лаборатории иммунологии ФГБУ РосНИИГТ ФМБА России; 191024, Россия, г. Санкт-Петербург, ул. 2-я Советская, д. 16; ORCID iD 0000-0001-7756-4902. Контактная информация: Глазанова Татьяна Валентиновна, e-mail: tatyana-glazanova@yandex.ru.

Прозрачность финансовой деятельности: никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах.

Конфликт интересов отсутствует.

Статья поступила: 10.03.2023.

Поступила после рецензирования: 04.04.2023.

Принята в печать: 27.04.2023.

About the authors:

Tatiana V. Glazanova — Dr. Sc. (Med.), Head of the Research Laboratory of Immunology, Russian Research Institute of Hematology and Transfusiology of the Federal Medical Biological Agency of Russia; 16, 2nd Sovetskaya str., St. Petersburg, 191024, Russian Federation; ORCID iD 0000-0002-1022-8127.

Elena R. Shilova — C. Sc. (Med.), Leading Researcher at the Research Laboratory of Immunology, Russian Research Institute of Hematology and Transfusiology of the Federal Medical Biological Agency of Russia; 16, 2nd Sovetskaya str., St. Petersburg, 191024, Russian Federation; ORCID iD 0000-0002-9253-6181.

Irina E. Pavlova — Dr. Sc. (Med.), Chief Researcher of the Research Laboratory of Immunology, Russian Research Institute of Hematology and Transfusiology of the Federal Medical Biological Agency of Russia; 16, 2nd Sovetskaya str., St. Petersburg, 191024, Russian Federation; ORCID iD 0000-0001-7756-4902.

Contact information: Tatiana V. Glazanova, e-mail: tatyana-glazanova@yandex.ru.

Financial Disclosure: no authors have a financial or property interest in any material or method mentioned.

There is no conflict of interests.

Received 10.03.2023.

Revised 04.04.2023.

Accepted 27.04.2023.


1. Mohn K.G., Bredholt G., Zhou F. et al. Durable T-cellular and humoral responses in SARS-CoV-2 hospitalized and community patients. PloS One. 2022;17(2):e0261979. DOI: 10.1371/journal.pone.0261979. 2. Хавинсон В.Х., Кузник Б.И. Осложнения у больных COVID-19. Предполагаемые механизмы коррекции. Клиническая медицина. 2020;98(4):256–265. DOI: 10.30629/0023-2149-2020-98-4-256-265. [Khavinson V.K., Kuznik B.I. Complications in COVID-19 patients. Suggested mechanisms of correction. Clinical Medicine (Russian Journal). 2020;98(4):256–265 (in Russ.)]. DOI: 10.30629/0023-2149-2020-98-4-256-265. 3. Mather M.W., Jardine L., Talks B. et al. Complexity of immune responses in COVID-19. Semin Immunol. 2021;55:101545. DOI: 10.1016/j.smim.2021.101545. 4. Болевич C.Б., Болевич С.С. Комплексный механизм развития СOVID-19. Сеченовский вестник. 2020;11(2):50–61. DOI: 10.47093/2218-7332.2020.11.2.50-61. [Bolevich S.B., Bolevich S.S. Complex mechanism of development of СOVID-19. Sechenovskiy vestnik. 2020;11(2):50–61 (in Russ.)]. DOI: 10.47093/2218-7332.2020.11.2.50-61. 5. Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–880. DOI: 10.1016/j.cell.2021.01.007. 6. Liu C., Martins A.J., Lau W.W. et al. Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19. Cell. 2021;184(7):1836–1857.e22. DOI: 10.1016/j.cell.2021.02.018. 7. Rydyznski-Moderbacher C., Ramirez S.I., Dan J.M. et al. Antigen-specific adaptive immunity to SARS-Cov-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012.e19. DOI: 10.1016/j.cell.2020.09.038. 8. Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. DOI: 10.1016/S0140-6736(20)30566-3. 9. Bernardes J.P., Mishra N., Tran F. et al. Longitudinal multi-omics analyses identify responses of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. Immunity. 2020;53(6):1296–1314.e9. DOI: 10.1016/j.immuni.2020.11.017. 10. Chen J., Lau Y.F., Lamirande E.W. et al. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+T cells are important in control of SARS-CoV infection. J Virol. 2010;84(3):1289–1301. DOI: 10.1128/JVI.01281-09. 11. Zheng H.Y., Zhang M., Yang C.X. et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–543. DOI: 10.1038/s41423-020-0401-3. 12. Delanghe J.R., De Buyzere M.L., Speeckaert M.M. C3 and ACE1 polymorphisms are more important confounders in the spread and outcome of COVID-19 in comparison with ABO polymorphism. Eur J Prev Cardiol. 2020;27(12):1331–1332. DOI: 10.1177/2047487320931305. 13. Fang S., Wang H., Lu L. et al. Decreased complement C3 levels are associated with poor prognosis in patients with COVID-19: a retrospective cohort study. Int Immunopharmacol. 2020;89(Pt A):107070. DOI: 10.1016/j.intimp.2020.107070. 14. Jamilloux Y., Henry T., Belot A. et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567. DOI: 10.1016/j.autrev.2020.102567. 15. Hong K.-H., Choi J.-P., Hong S.-H. et al. Predictors of mortality in Middle East respiratory syndrome (MERS). Thorax. 2018;73(3):286–289. DOI: 10.1136/thoraxjnl-2016-209313. 16. Dessie Z.G., Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021;21:855. DOI: 10.1186/s12879-021-06536-3. 17. Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;17;323(11):1061–1069. DOI: 10.1001/jama.2020.1585. 18. Wang K., Zuo P., Liu Y. et al. Clinical and laboratory predictors of in-hospital mortality in 305 patients with COVID-19: a cohort study in Wuhan, China. Clin Infect Dis. 2020;71(16):2079–2088. DOI: 10.1093/cid/ciaa538. 19. Yoneyama M., Kikuchi M., Natsukawa T. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730–737. DOI: 10.1038/ni1087. 20. Pourgheysari B., Khan N., Best D. et al. The cytomegalovirus-specific CD4+ T-cell response expands with age and markedly alters the CD4+ T-cell repertoire. J Virol. 2007;81(14):7759–7765. DOI: 10.1128/JVI.01262-06. 21. Goronzy J.J., Weyand C.M. Successful and maladaptive T cell aging. Immunity. 2017;46(3):364–378. DOI: 10.1016/j.immuni.2017.03.010. 22. Xu H., Barnes G.T., Yang Q. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–1830. DOI: 10.1172/JCI19451. 23. Weisberg S.P., McCann D., Desai M. et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–1808. DOI: 10.1172/JCI19246. 24. Демидова Т.Ю., Волкова Е.В., Грицкевич Е.Ю. Ожирение и COVID-19: фатальная связь. Инфекционные болезни: новости, мнения, обучение. 2020;9(3):25–32. DOI: 10.33029/2305-3496-2020-9-3S-25-32. [Demidova T.Yu., Volkova Е.V., Grickevich Е.Yu. Obesity and COVID-19: a fatal link. Infectious Diseases: News, Opinions, Training. 2020;9(3):25–32 (in Russ.)]. DOI: 10.33029/2305-3496-2020-9-3S-25-32. 25. Sattar N., McInnes I.B., McMurray J.J.V. Obesity is a risk factor for severe COVID-19 infection: Multiple Potential Mechanisms. Circulation. 2020;142(1):4–6. DOI: 10.1161/CIRCULATIONAHA.120.047659. 26. Budu-Aggrey A., Brumpton B., Tyrrell J. et al. Evidence of a causal relationship between body mass index and psoriasis: a mendelian randomization study. PLoS Med. 2019;16:e1002739. DOI: 10.1371/journal.pmed.1002739. 27. Романцова Т.И., Сыч И.П. Иммунометаболизм и метавоспаление при ожирении. Ожирение и метаболизм. 2019;16(4):3–17. DOI: 14341/omet12218. [Romantsova T.I., Sych Y.P. Immunometabolism and Metainflammation in Obesity. Obesity and Metabolism. 2019;16(4):3–17 (in Russ.)]. DOI: 14341/omet12218. 28. Cai S., Liao W., Chen S. et al. Association between obesity and clinical prognosis in patients infected with SARS-CoV-2. Infect Dis Poverty. 2020;9(1):80. DOI: 10.1186/s40249-020-00703-5. 29. Халимов Ю.Ш., Агафонов П.В., Киреева Е.Б. Ожирение и COVID-19: инсайты двух пандемий. Журнал инфектологии. 2022;14(2):27–38. DOI: 10.22625/2072-6732-2022-14-2-27-38. [Khalimov Yu.S., Agafonov P.V., Kireeva E.B. Obesity and COVID-19: insights from two pandemics. Journal of Infectology. 2022;14(2):27–38 (in Russ.)]. DOI: 10.22625/2072-6732-2022-14-2-27-38. 30. Гусова З.Р., Воробьев С.В., Хрипун И.А. и др. О роли цитокинов в патогенезе метаболических нарушений и андрогенного дефицита у мужчин с ожирением и метаболическим синдромом. Фундаментальные исследования. 2014;10(6):1227–1233. (Электронный ресурс.) URL: https://fundamental-research.ru/ru/article/view?id=36021) (дата обращения: 08.11.2022). [Gusova Z.R., Vorobev S.V., Khripun I.A. Role of cytokines in the pathogenesis of metabolic disorders and androgen deficiency in men with obesity and metabolic syndrome. Fundamental research. 2014;10(6):1227–1233. URL: https://fundamental-research.ru/ru/article/view?id=36021 (access date: 08.11.2022) (in Russ.)]. 31. Tamara A., Tahapary D.L. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab Syndr. 2020;14(4):655–659. DOI: 10.1016/j.dsx.2020.05.020. 32. Барсуков И.А., Демина А.А. Ожирение и инсулинорезистентность: механизмы развития и пути коррекции. РМЖ. 2021;2:26–30. [Barsukov I.A., Demina A.A. Obesity and insulin resistance: pathogenesis and ways of correction. RMJ. 2021;2:26–30 (in Russ.)]. 33. Поддубная И.В., Тумян Г.С., Трофимова О.П. и др. Особенности ведения онкогематологических пациентов в условиях пандемии COVID-19. Современная онкология. 2020;22(3):45–58. DOI: 10.26442/18151434.2020.3.200152. [Poddubnaya I.V., Tumian G.S., Trofimova O.P. et al. Features of management of oncohematological patients in the context of the COVID-19 pandemic. Journal of Modern Oncology. 2020;22(3):45–58 (in Russ.)]. DOI: 10.26442/18151434.2020.3.200152. 34. Mato A., Roeker L., Lamanna N. et al. Outcomes of COVID-19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134–1143. DOI: 10.1182/blood.2020006965. 35. Lee C., Shah M., Hoyos D. et al. Prolonged SARS-CoV-2 infection in patients with lymphoid malignancies. Cancer Discov. 2022;12(1):62–73. DOI: 10.1158/2159-8290.CD-21-1033. 36. Бубнова Л.Н., Павлова И.Е., Беркос А.С. и др. Особенности распределения групп аллелей HLA-А*, B*, DRB1* среди лиц, перенесших COVID-19. Медицинская иммунология. 2021;23(3):523–532. DOI: 10.15789/1563-0625-DPO-2334. [Bubnova L.N., Pavlova I.E., Berkos A.S. et al. Distribution patterns of HLA-A*, B*, DRB1* allele groups among persons who underwent COVID-19. Medical Immunology (Russia). 2021;23(3):523–532 (in Russ.)]. DOI: 10.15789/1563-0625-DPO-2334. 37. Трошина Е.А., Юкина М.Ю., Нуралиева Н.Ф., Мокрышева Н.Г. Роль генов системы HLA: от аутоиммунных заболеваний до COVID-19. Проблемы эндокринологии. 2020;4(66):9–15. DOI: 10.14341/probl12470. [Troshina E.A., Yukina M.Yu., Nuralieva N.F., Mokrysheva N.G. The role of HLA genes: from autoimmune diseases to COVID-19. Problems of Endocrinology. 2020;66(4):9–15 (in Russ.)]. DOI: 10.14341/probl12470. 38. Nguyen A., David J.K., Maden S.K. et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol. 2020;94(13):e00510–20. DOI: 10.1128/JVI.00510-20. 39. Adhiahet A.H., Abdullah M.H., Alsudani M.Y. et al. Association between ABO blood groups and susceptibility to COVID-19: profile of age and gender in Iraqi patients. Egyptian Journal of Medical Human Genetics. 2020;21:76. DOI: 10.1186/s43042-020-00115-y. 40. Zhao J., Yang Y., Huang H.-P. et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. MedRxiv. 2020.03.11.20031096. Preprint. DOI: 10.1101/2020.03.11.20031096. 41. Rodríguez Y., Novelli L., Rojas M. et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. DOI: 10.1016/j.jaut.2020.102506. 42. Zhang Q., Bastard P., Liu Z. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. DOI: 10.1126/science.abd4570. 43. Solanich X., Rigo-Bonnin R., Gumucio V.D. et al. Pre-existing autoantibodies neutralizing high concentrations of type I interferons in almost 10% of COVID-19 patients admitted to intensive care in Barcelona. J Clin Immunol. 2021;41(8):1733–1744. DOI: 10.1007/s10875-021-01136-x. 44. Abdullah M., Chai P.-S., Chong M.-Y. et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. Cell Immunol. 2012;272(2):214–219. DOI: 10.1016/j.cellimm.2011.10.009. 45. Ding T., Zhang J., Wang T. et al. A multi-hospital study in Wuhan, China: protective effects of non-menopause and female hormones on SARS-CoV-2 infection. MedRxiv. March 2020. Preprint. DOI: 10.1101/2020.03.26.20043943. 46. Scully E.P., Haverfield J., Ursin R.L. et al. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20(7):442–447. DOI: 10.1038/s41577-020-0348-8. 47. Parohan M., Yaghoubi S., Seraji A. et al. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;23(5):1416–1424. DOI: 10.1080/13685538.2020.1774748. 48. Van der Made C.I., Simons A., Schuurs-Hoeijmakers J. et al. Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA. 2020;324(7):663–673. DOI: 10.1001/jama.2020.13719. 49. Tvito A., Ronson A., Ghosheh R. et al. Anti-CD20 monoclonal antibodies inhibit seropositive response to Covid-19 vaccination in non-Hodgkin lymphoma patients within 6 months after treatment. Exp Hematol. 2022;107:20–23. DOI: 10.1016/j.exphem.2021.12.396. 50. Tamariz-Amador L.E., Battaglia A., Maia C. et al. Immune biomarkers to predict SARS-CoV-2 vaccine effectiveness in patients with hematological malignancies. Blood Cancer J. 2021;11(12):202. DOI: 10.1038/s41408-021-00594-1. 51. Chung D., Shah G., Devlin S.L. et al. Disease- and Therapy-Specific Impact on Humoral Immune Responses to COVID-19 Vaccination in Hematologic Malignancies. Blood Cancer Discov. 2021;2(6):568–576. DOI: 10.1158/2643-3230.BCD-21-0139. 52. Woodruff M., Ramonell R., Haddad N. et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611:139–147. DOI: 10.1038/s41586-022-05273-0.
Лицензия Creative Commons
Контент доступен под лицензией Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Новости/Конференции
Все новости
Новости/Конференции
Все новости
Ближайшие конференции
Все мероприятия

Данный информационный сайт предназначен исключительно для медицинских, фармацевтических и иных работников системы здравоохранения.
Вся информация сайта www.rmj.ru (далее — Информация) может быть доступна исключительно для специалистов системы здравоохранения. В связи с этим для доступа к такой Информации от Вас требуется подтверждение Вашего статуса и факта наличия у Вас профессионального медицинского образования, а также того, что Вы являетесь действующим медицинским, фармацевтическим работником или иным соответствующим профессионалом, обладающим соответствующими знаниями и навыками в области медицины, фармацевтики, диагностики и здравоохранения РФ. Информация, содержащаяся на настоящем сайте, предназначена исключительно для ознакомления, носит научно-информационный характер и не должна расцениваться в качестве Информации рекламного характера для широкого круга лиц.

Информация не должна быть использована для замены непосредственной консультации с врачом и для принятия решения о применении продукции самостоятельно.

На основании вышесказанного, пожалуйста, подтвердите, что Вы являетесь действующим медицинским или фармацевтическим работником, либо иным работником системы здравоохранения.

Читать дальше